Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức\(\left(a+b\right)^2>=4ab\)
Ta có
2P=(2x+4y+6z)(6x+3y+2z) <= (8(x+y+z)-y)^2/4 <= ((8-y)^2)/4 <= (8^2)/4= 16
Dấu "=" xảy ra khi x=1/2; y=0;z=1/2
Do đó max P=8 khi x=1/2;y=0;z=1/2
Với mọi a;b;c không âm ta có:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ca\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)
Áp dụng:
a.
\(VT\le\sqrt{3\left(x+7+y+7+z+7\right)}=\sqrt{3\left(6+21\right)}=9\)
Dấu "=" xảy ra khi \(x=y=z=2\)
b.
\(VT\le\sqrt{3\left(3x+2y+3y+2z+3z+2x\right)}=\sqrt{15\left(x+y+z\right)}=\sqrt{15.6}=3\sqrt{10}\)
Dấu "=" xảy ra khi \(x=y=z=2\)
c.
\(VT\le\sqrt{3\left(2x+5+2y+5+2z+5\right)}=\sqrt{3\left(2.6+15\right)}=9\)
Dấu "=" xảy ra khi \(x=y=z=2\)