K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 4 2020

Lời giải bài này khá dài, làm biếng gõ

Bạn lên google search "đề thi vào 10 chuyên khtn" nhé, đây là bài BĐT trong đề vòng 1 chuyên KHTN năm 2019

2 tháng 4 2020

Ta có:

\( 1 + {x^2} = \left( {x + y} \right)\left( {x + z} \right)\\ 1 + {y^2} = \left( {x + y} \right)\left( {y + z} \right)\\ 1 + {z^2} = \left( {x + z} \right)\left( {y + z} \right) \)

Nên: \(\dfrac{1}{{1 + {x^2}}} + \dfrac{1}{{1 + {y^2}}} + \dfrac{1}{{1 + {z^2}}} = \dfrac{1}{{\left( {x + y} \right)\left( {x + z} \right)}} + \dfrac{1}{{\left( {x + y} \right)\left( {y + z} \right)}} + \dfrac{1}{{\left( {x + z} \right)\left( {y + z} \right)}} = \dfrac{{2\left( {x + y + z} \right)}}{{\left( {x + y} \right)\left( {y + z} \right)\left( {x + z} \right)}}\)

\( \dfrac{x}{{\sqrt {1 + {x^2}} }} + \dfrac{y}{{\sqrt {1 + {y^2}} }} + \dfrac{z}{{\sqrt {1 + {z^2}} }} = \dfrac{x}{{\sqrt {\left( {x + y} \right)\left( {x + z} \right)} }} + \dfrac{y}{{\sqrt {\left( {x + y} \right)\left( {y + z} \right)} }} + \dfrac{z}{{\left( {x + z} \right)\left( {y + z} \right)}}\\ \dfrac{x}{{\sqrt {1 + {x^2}} }} + \dfrac{y}{{\sqrt {1 + {y^2}} }} + \dfrac{z}{{\sqrt {1 + {z^2}} }} \le \dfrac{1}{2}\left( {\dfrac{x}{{x + y}} + \dfrac{x}{{x + z}} + \dfrac{y}{{x + y}} + \dfrac{y}{{y + z}} + \dfrac{z}{{x + z}} + \dfrac{z}{{y + z}}} \right) \)

Mặt khác, áp dụng $Bunhia$ ta có:

\({\left( {\dfrac{x}{{\sqrt {1 + {x^2}} }} + \dfrac{y}{{\sqrt {1 + {y^2}} }} + \dfrac{z}{{\sqrt {1 + {z^2}} }}} \right)^2} \le \left( {x + y + z} \right)\left( {\dfrac{x}{{1 + {x^2}}} + \dfrac{y}{{1 + {y^2}}} + \dfrac{z}{{1 + {z^2}}}} \right) = M\)

Với \(M = \dfrac{{2\left( {x + y + z} \right)\left( {xy + yz + xz} \right)}}{{\left( {x + y} \right)\left( {x + z} \right)\left( {y + z} \right)}} = \dfrac{{2\left( {x + y + z} \right)}}{{\left( {x + y} \right)\left( {x + z} \right)\left( {y + z} \right)}}\)

Lại có:

\( VP = \dfrac{2}{3}{\left( {\dfrac{x}{{1 + {x^2}}} + \dfrac{y}{{1 + {y^2}}} + \dfrac{z}{{1 + {z^2}}}} \right)^3} = \dfrac{2}{3}{\left( {\dfrac{1}{{1 + {x^2}}} + \dfrac{1}{{1 + {y^2}}} + \dfrac{1}{{1 + {z^2}}}} \right)^2}\\ VP \le \dfrac{{4\left( {x + y + z} \right)}}{{3\left( {x + y} \right)\left( {x + z} \right)\left( {y + z} \right)}}.\dfrac{3}{2} = \dfrac{{2\left( {x + y + z} \right)}}{{\left( {x + y} \right)\left( {x + z} \right)\left( {y + z} \right)}} = \dfrac{1}{{1 + {x^2}}} + \dfrac{1}{{1 + {y^2}}} + \dfrac{1}{{1 + {z^2}}} \)

Vậy \(\dfrac{1}{{1 + {x^2}}} + \dfrac{1}{{1 + {y^2}}} + \dfrac{1}{{1 + {z^2}}} \ge \dfrac{3}{2}{\left( {\dfrac{x}{{\sqrt {1 + {x^2}} }} + \dfrac{y}{{\sqrt {1 + {y^2}} }} + \dfrac{z}{{\sqrt {1 + {z^2}} }}} \right)^2}\)

Dấu \("= "\) xảy ra khi \(x=y=z=\dfrac{1}{\sqrt{3}}\)