Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{2}{x^2+y^2}+\frac{2}{y^2+z^2}+\frac{2}{z^2+x^2}=\frac{x^2+y^2+z^2}{x^2+y^2}+\frac{x^2+y^2+z^2}{y^2+z^2}+\frac{x^2+y^2+z^2}{z^2+x^2}=\frac{z^2}{x^2+y^2}+\frac{x^2}{y^2+z^2}+\frac{y^2}{z^2+x^2}+3\)
Ta lại có : \(x^2+y^2\le2xy\Leftrightarrow\frac{z^2}{x^2+y^2}\le\frac{z^2}{2xy}\)
\(y^2+z^2\le2yz\Leftrightarrow\frac{x^2}{y^2+z^2}\le\frac{x^2}{2yz}\)
\(z^2+x^2\le2zx\Leftrightarrow\frac{y^2}{z^2+x^2}\le\frac{y^2}{2zx}\)
Cộng vế theo vế ta có :
\(\frac{z^2}{x^2+y^2}+\frac{x^2}{y^2+z^2}+\frac{y^2}{z^2+x^2}\le\frac{z^2}{2xy}+\frac{x^2}{2yz}+\frac{y^2}{2zx}\)
\(\Leftrightarrow\frac{z^2}{x^2+y^2}+\frac{x^2}{y^2+z^2}+\frac{y^2}{z^2+x^2}+3\le\frac{z^2}{2xy}+\frac{x^2}{2yz}+\frac{y^2}{2zx}+3\)
\(\Leftrightarrow\frac{2}{x^2+y^2}+\frac{2}{y^2+z^2}+\frac{2}{z^2+x^2}\le\frac{x^2+y^2+z^2}{2xyz}+3\)
\(\Rightarrowđpcm\)
Đặt \(\frac{2}{x^2+y^2}+\frac{2}{y^2+z^2}+\frac{2}{x^2+z^2}\le\frac{x^3+y^3+z^3}{2xyz}+3\) \(\left(\text{*}\right)\)
Khi đó, ta cần chứng minh bất đẳng thức \(\left(\text{*}\right)\) luôn đúng với mọi \(x,y,z\in Z^+\) và \(x^2+y^2+z^2=2\) \(\left(\alpha\right)\)
\(VP\left(\text{*}\right)=\frac{x^2}{2yz}+\frac{y^2}{2xz}+\frac{z^2}{2xy}+3\)
Ta có các bất đẳng thức quen thuộc đối với ba số \(x,y,z\in Z^+\) như sau:
\(\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2xz\end{cases}}\)
Áp dụng các bất đẳng thức trên cho \(VP\left(\text{*}\right)\) ta được:
\(VP\left(\text{*}\right)\ge\left(\frac{x^2}{y^2+z^2}+1\right)+\left(\frac{y^2}{x^2+z^2}+1\right)+\left(\frac{z^2}{x^2+y^2}+1\right)=\frac{2}{y^2+z^2}+\frac{2}{x^2+z^2}+\frac{2}{x^2+y^2}\) (theo \(\left(\alpha\right)\) )
Hay nói cách khác, \(VP\left(\text{*}\right)\ge VT\left(\text{*}\right)\)
Vậy, bđt \(\left(\text{*}\right)\) được chứng minh.
Dấu \("="\) xảy ra khi và chỉ khi \(\hept{\begin{cases}x=y=z\\x^2+y^2+z^2=2\end{cases}\Leftrightarrow}\) \(x=y=z=\sqrt{\frac{2}{3}}\)
\(\frac{2}{x^2+y^2}+\frac{2}{y^2+z^2}+\frac{2}{x^2+z^2}=\frac{x^2+y^2+z^2}{x^2+y^2}+\frac{x^2+y^2+z^2}{y^2+z^2}+\frac{x^2+y^2+z^2}{x^2+z^2}\)
\(=3+\frac{z^2}{x^2+y^2}+\frac{x^2}{y^2+z^2}+\frac{y^2}{x^2+z^2}\)
Áp dụng BĐT cô-si cho các cặp số thực không âm sau: x2 và y2 ; y2 và z2 ; x2 và z2 ta được:
\(x^2+y^2\ge2xy\Rightarrow\frac{z^2}{x^2+y^2}\le\frac{z^2}{2xy}\left(1\right)\)
Tương tự ta được: \(\frac{x^2}{y^2+z^2}\le\frac{x^2}{2yz}\left(2\right);\frac{y^2}{x^2+z^2}\le\frac{y^2}{2xz} \left(3\right)\)
Từ (1) và (2) và (3) suy ra: \(\frac{2}{x^2+y^2}+\frac{2}{y^2+z^2}+\frac{2}{x^2+z^2}\le3+\frac{z^2}{2xy}+\frac{x^2}{2yz}+\frac{y^2}{2xz}=3+\frac{x^3+y^3+z^3}{2xyz}\)
ta có: \(VT=\frac{x^2+y^2+z^2}{x^2+y^2}+\frac{x^2+y^2+z^2}{y^2+z^2}+\frac{x^2+y^2+z^2}{z^2+x^2}=3+\frac{z^2}{x^2+y^2}+\frac{x^2}{y^2+z^2}+\frac{y^2}{x^2+z^2}\)
Áp dụng bất đẳng thức cauchy: \(\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2xz\end{cases}}\)
do đó \(VT\le3+\frac{x^2}{2yz}+\frac{y^2}{2xz}+\frac{z^2}{2xy}=\frac{x^3+y^3+z^3}{2xyz}+3=VF\)
đẳng thức xảy ra khi x=y=z
Bằng một số bước tính toán cơ bản, chúng ta có được:
\(VT-VP=\Sigma_{cyc}\frac{x\left(x-z\right)^2}{2\left(x^2+z^2\right)}\ge0\)
Theo giả thiết xy + yz + zx = 1 nên ta có: \(VT=\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}=\frac{1}{xy+yz+zx+x^2}+\frac{1}{xy+yz+zx+y^2}+\frac{1}{xy+yz+zx+z^2}=\frac{1}{\left(x+y\right)\left(x+z\right)}+\frac{1}{\left(y+x\right)\left(y+z\right)}+\frac{1}{\left(z+x\right)\left(z+y\right)}=\frac{2\left(x+y+z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)Theo bất đẳng thức Cauchy-Schwarz: \(\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^2\le\left(x+y+z\right)\left(\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\right)=\left(x+y+z\right)\left(\frac{x}{\left(x+y\right)\left(x+z\right)}+\frac{y}{\left(y+z\right)\left(y+x\right)}+\frac{z}{\left(z+x\right)\left(z+y\right)}\right)=\frac{2\left(x+y+z\right)\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{2\left(x+y+z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)\(\Rightarrow\frac{2}{3}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^3\le\frac{4\left(x+y+z\right)}{3\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)\)Ta cần chứng minh: \(\frac{2\left(x+y+z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\ge\frac{4\left(x+y+z\right)}{3\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)\)
hay \(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\le\frac{3}{2}\)
Bất đẳng thức cuối đúng theo AM - GM do: \(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{y+z}.\frac{y}{x+y}}+\sqrt{\frac{z}{z+x}.\frac{z}{z+y}}\le\frac{\left(\frac{x}{x+y}+\frac{x}{x+z}\right)+\left(\frac{y}{y+z}+\frac{y}{x+y}\right)+\left(\frac{z}{z+x}+\frac{z}{z+y}\right)}{2}=\frac{3}{2}\)Đẳng thức xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)
\(\Sigma\frac{x^3}{y^2}=\Sigma\frac{x}{y^2}\left(x-y\right)^2+\frac{\Sigma z\left(x^3-yz^2\right)^2}{xyz\left(x+y+z\right)}+\Sigma\frac{x^2}{y}\ge\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\)
Ta có: \(\frac{x^2}{x^4+yz}\le\frac{x^2}{2\sqrt{x^4.yz}}=\frac{x^2}{2x^2\sqrt{yz}}=\frac{1}{2\sqrt{yz}}\)(BĐt cosi) (1)
CMTT: \(\frac{y^2}{y^4+xz}\le\frac{1}{2\sqrt{xz}}\) (2)
\(\frac{z^2}{z^4+xy}\le\frac{1}{2\sqrt{xy}}\)(3)
Từ (1); (2) và (3) =>A = \(\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\le\frac{1}{2}\left(\frac{1}{\sqrt{xz}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xy}}\right)\)
Áp dụng bđt \(ab+bc+ac\le a^2+b^2+c^2\)
cmt đúng: <=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)(luôn đúng)
Khi đó: A \(\le\frac{1}{2}\cdot\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}\cdot\frac{xy+yz+xz}{xyz}\le\frac{1}{2}\cdot\frac{x^2+y^2+z^2}{xyz}=\frac{3xyz}{2xyz}=\frac{3}{2}\)
\(VT=\sum\frac{2}{x^2+y^2}=\sum\frac{x^2+y^2+z^2}{x^2+y^2}=\sum\left(1+\frac{z^2}{x^2+y^2}\right)\le3+\sum\frac{z^2}{2xy}=3+\frac{x^3+y^3+z^3}{2xyz}=VP\)