Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
/\(2020\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{y^2+z^2}+\dfrac{1}{x^2+y^2}\right)ápdụngBDT\)
\(\dfrac{1}{x^2+y^2}+\dfrac{1}{y^2+z^2}+\dfrac{1}{x^2+z^2}\ge\dfrac{9}{2\left(x^2+y^2+z^2\right)}=\dfrac{9}{2\cdot2020}\)
\(ápdụngBĐTcosi\)
\(x^3+y^3+z^3\ge3xyz\)
\(\)=> VP\(\ge\) 9/2
Ta có : \(\frac{2}{x^2+y^2}+\frac{2}{y^2+z^2}+\frac{2}{z^2+x^2}=\frac{x^2+y^2+z^2}{x^2+y^2}+\frac{x^2+y^2+z^2}{y^2+z^2}+\frac{x^2+y^2+z^2}{z^2+x^2}=\frac{z^2}{x^2+y^2}+\frac{x^2}{y^2+z^2}+\frac{y^2}{z^2+x^2}+3\)
Ta lại có : \(x^2+y^2\le2xy\Leftrightarrow\frac{z^2}{x^2+y^2}\le\frac{z^2}{2xy}\)
\(y^2+z^2\le2yz\Leftrightarrow\frac{x^2}{y^2+z^2}\le\frac{x^2}{2yz}\)
\(z^2+x^2\le2zx\Leftrightarrow\frac{y^2}{z^2+x^2}\le\frac{y^2}{2zx}\)
Cộng vế theo vế ta có :
\(\frac{z^2}{x^2+y^2}+\frac{x^2}{y^2+z^2}+\frac{y^2}{z^2+x^2}\le\frac{z^2}{2xy}+\frac{x^2}{2yz}+\frac{y^2}{2zx}\)
\(\Leftrightarrow\frac{z^2}{x^2+y^2}+\frac{x^2}{y^2+z^2}+\frac{y^2}{z^2+x^2}+3\le\frac{z^2}{2xy}+\frac{x^2}{2yz}+\frac{y^2}{2zx}+3\)
\(\Leftrightarrow\frac{2}{x^2+y^2}+\frac{2}{y^2+z^2}+\frac{2}{z^2+x^2}\le\frac{x^2+y^2+z^2}{2xyz}+3\)
\(\Rightarrowđpcm\)
Đặt \(\frac{2}{x^2+y^2}+\frac{2}{y^2+z^2}+\frac{2}{x^2+z^2}\le\frac{x^3+y^3+z^3}{2xyz}+3\) \(\left(\text{*}\right)\)
Khi đó, ta cần chứng minh bất đẳng thức \(\left(\text{*}\right)\) luôn đúng với mọi \(x,y,z\in Z^+\) và \(x^2+y^2+z^2=2\) \(\left(\alpha\right)\)
\(VP\left(\text{*}\right)=\frac{x^2}{2yz}+\frac{y^2}{2xz}+\frac{z^2}{2xy}+3\)
Ta có các bất đẳng thức quen thuộc đối với ba số \(x,y,z\in Z^+\) như sau:
\(\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2xz\end{cases}}\)
Áp dụng các bất đẳng thức trên cho \(VP\left(\text{*}\right)\) ta được:
\(VP\left(\text{*}\right)\ge\left(\frac{x^2}{y^2+z^2}+1\right)+\left(\frac{y^2}{x^2+z^2}+1\right)+\left(\frac{z^2}{x^2+y^2}+1\right)=\frac{2}{y^2+z^2}+\frac{2}{x^2+z^2}+\frac{2}{x^2+y^2}\) (theo \(\left(\alpha\right)\) )
Hay nói cách khác, \(VP\left(\text{*}\right)\ge VT\left(\text{*}\right)\)
Vậy, bđt \(\left(\text{*}\right)\) được chứng minh.
Dấu \("="\) xảy ra khi và chỉ khi \(\hept{\begin{cases}x=y=z\\x^2+y^2+z^2=2\end{cases}\Leftrightarrow}\) \(x=y=z=\sqrt{\frac{2}{3}}\)
\(\frac{2}{x^2+y^2}+\frac{2}{y^2+z^2}+\frac{2}{x^2+z^2}=\frac{x^2+y^2+z^2}{x^2+y^2}+\frac{x^2+y^2+z^2}{y^2+z^2}+\frac{x^2+y^2+z^2}{x^2+z^2}\)
\(=3+\frac{z^2}{x^2+y^2}+\frac{x^2}{y^2+z^2}+\frac{y^2}{x^2+z^2}\)
Áp dụng BĐT cô-si cho các cặp số thực không âm sau: x2 và y2 ; y2 và z2 ; x2 và z2 ta được:
\(x^2+y^2\ge2xy\Rightarrow\frac{z^2}{x^2+y^2}\le\frac{z^2}{2xy}\left(1\right)\)
Tương tự ta được: \(\frac{x^2}{y^2+z^2}\le\frac{x^2}{2yz}\left(2\right);\frac{y^2}{x^2+z^2}\le\frac{y^2}{2xz} \left(3\right)\)
Từ (1) và (2) và (3) suy ra: \(\frac{2}{x^2+y^2}+\frac{2}{y^2+z^2}+\frac{2}{x^2+z^2}\le3+\frac{z^2}{2xy}+\frac{x^2}{2yz}+\frac{y^2}{2xz}=3+\frac{x^3+y^3+z^3}{2xyz}\)
\(\frac{1}{x^2+y^2}+\frac{1}{y^2+z^2}+\frac{1}{z^2+x^2}=\frac{x^2+y^2+z^2}{x^2+y^2}+\frac{x^2+y^2+z^2}{y^2+z^2}+\frac{x^2+y^2+z^2}{z^2+x^2}\)
\(=1+\frac{z^2}{x^2+y^2}+1+\frac{x^2}{y^2+z^2}+1+\frac{y^2}{z^2+x^2}\)
\(\le3+\frac{z^2}{2xy}+\frac{x^2}{2yz}+\frac{y^2}{2zx}\)\(=3+\frac{x^3+y^3+z^3}{2xyz}\)
Dấu "=" \(\Leftrightarrow x=y=z=\frac{\sqrt{3}}{3}\)
BĐT <=>\(\frac{x^2+y^2+z^2}{x^2+y^2}+\frac{x^2+y^2+z^2}{y^2+z^2}+\frac{x^2+y^2+z^2}{x^2+z^2}\le\frac{x^2}{2yz}+\frac{y^2}{2xz}+\frac{z^2}{2xy}+3\)
<=> \(^{1+\frac{z^2}{x^2+y^2}+1+\frac{x^2}{y^2+z^2}+1+\frac{y^2}{x^2+z^2}\le\frac{x^2}{2yz}+\frac{y^2}{2xz}+\frac{z^2}{2xy}+3}\)
<=> \(\frac{z^2}{x^2+y^2}+\frac{x^2}{y^2+z^2}+\frac{y^2}{x^2+z^2}\le\frac{x^2}{2yz}+\frac{y^2}{2xz}+\frac{z^2}{2xy}\) (1)
TA có \(\left(x-y\right)^2\ge0\) với mọi x ; y => \(x^2+y^2\ge2xy\Rightarrow\frac{z^2}{x^2+y^2}\le\frac{z}{yz}\)
Tương tự với hai cái còn lại ..
=> BĐT (1) đúng
Dấu '' = '' xảy ra khi x = y = z = ...
Lời giải:Vì $x^2+y^2+z^2=2$ nên:
$P=\frac{x^2+y^2+z^2}{x^2+y^2}+\frac{x^2+y^2+z^2}{y^2+z^2}+\frac{x^2+y^2+z^2}{z^2+x^2}-\frac{x^3+y^3+z^3}{2xyz}$
$=3+\frac{x^2}{y^2+z^2}+\frac{y^2}{x^2+z^2}+\frac{z^2}{x^2+y^2}-\frac{x^3+y^3+z^3}{2xyz}$
$\leq 3+\frac{x^2}{2yz}+\frac{y^2}{2xz}+\frac{z^2}{2xy}-\frac{x^3+y^3+z^3}{2xyz}$
(theo BĐT AM-GM)
$=3+\frac{x^3+y^3+z^3}{2xyz}-\frac{x^3+y^3+z^3}{2xyz}=3$
Vậy $P_{\max}=3$
Dấu "=" xảy ra khi $x=y=z=\sqrt{\frac{2}{3}}$
Đừng để bị đánh lừa, đưa bài toán này về cơ bản bằng cách đặt \(\left(x^2+2;y^2+2;z^2+2\right)\rightarrow\left(a,b,c\right)\)
thì \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{3}\).tìm max của \(sigma\frac{1}{\sqrt{a-2}}\) đến đây nhường chủ tus
Nhìn lại lịch sử và đào ra bài này :v cái đó đặt ẩn rồi chuyển qua cũng k đẹp đâu, tham khảo :|
ta có: \(VT=\frac{x^2+y^2+z^2}{x^2+y^2}+\frac{x^2+y^2+z^2}{y^2+z^2}+\frac{x^2+y^2+z^2}{z^2+x^2}=3+\frac{z^2}{x^2+y^2}+\frac{x^2}{y^2+z^2}+\frac{y^2}{x^2+z^2}\)
Áp dụng bất đẳng thức cauchy: \(\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2xz\end{cases}}\)
do đó \(VT\le3+\frac{x^2}{2yz}+\frac{y^2}{2xz}+\frac{z^2}{2xy}=\frac{x^3+y^3+z^3}{2xyz}+3=VF\)
đẳng thức xảy ra khi x=y=z