K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2016

Ta đặt \(\hept{\begin{cases}x+z=a\\y+z=b\end{cases}\Rightarrow ab=1}\)

\(BĐT\Leftrightarrow\frac{1}{\left(a-b\right)^2}+\frac{1}{a^2}+\frac{1}{b^2}\ge4\)

Ta có

\(\frac{1}{\left(a-b\right)^2}+\frac{1}{a^2}+\frac{1}{b^2}=\frac{1}{\left(a-\frac{1}{a}\right)^2}+a^2+\frac{1}{a^2}\)

\(=\frac{1}{\left(a-\frac{1}{a}\right)^2}+\left(a-\frac{1}{a}\right)^2+2\)

\(\ge2+2=4\)

19 tháng 2 2017

bạn chưa chỉ ra dấu bằng xảy ra khi nào

2 tháng 12 2017

\(\Leftrightarrow\frac{4}{x\left(y+z\right)}\ge1\)

mà \(x\left(y+z\right)\le\frac{\left(x+y+z\right)^2}{4}\)

\(\Rightarrow\frac{4}{x\left(y+z\right)}\ge\frac{4}{\frac{\left(x+y+z\right)^2}{4}}=\frac{16}{\left(x+y+z\right)^2}=\frac{16}{16}=1\left(đpcm\right)\)

2 tháng 12 2017

Tuyển ơi, m giải cho ai thế

NV
13 tháng 5 2020

Đặt \(\left\{{}\begin{matrix}x-y=a\\x-z=b\end{matrix}\right.\) \(\Rightarrow z-y=a-b\)\(ab=1\)

\(VT=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a-b\right)^2}=\frac{a^2+b^2}{a^2b^2}+\frac{1}{\left(a-b\right)^2}\)

\(VT=a^2+b^2+\frac{1}{\left(a-b\right)^2}=\left(a-b\right)^2+\frac{1}{\left(a-b\right)^2}+2ab=\left(a-b\right)^2+\frac{1}{\left(a-b\right)^2}+2\)

\(VT\ge2\sqrt{\frac{\left(a-b\right)^2}{\left(a-b\right)^2}}+2=4\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\left(x-y\right)\left(x-z\right)=1\\\left(y-z\right)^2=1\end{matrix}\right.\)

29 tháng 8 2019

\(\frac{x}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{z}\right)}+\frac{y}{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{x}\right)}+\)\(\frac{z}{\left(\sqrt{z}-\sqrt{x}\right)\left(\sqrt{z}-\sqrt{y}\right)}\)

\(=-\frac{x}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{z}-\sqrt{x}\right)}-\frac{y}{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{x}-\sqrt{y}\right)}\)\(-\frac{z}{\left(\sqrt{z}-\sqrt{x}\right)\left(\sqrt{y}-\sqrt{z}\right)}\)

\(=\frac{-x\left(\sqrt{y}-\sqrt{z}\right)-y\left(\sqrt{z}-\sqrt{x}\right)-z\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{z}-\sqrt{x}\right)}\)

\(=\frac{-x\sqrt{y}+x\sqrt{z}-y\sqrt{z}+y\sqrt{x}-z\sqrt{x}+z\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{z}-\sqrt{x}\right)}\)

\(=\frac{-\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)+\sqrt{z}\left(x-y\right)-z\left(\sqrt{x}-y\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{z}-\sqrt{x}\right)}\)

\(=\frac{-\sqrt{xy}+\sqrt{z}\left(\sqrt{x}+\sqrt{y}\right)-z}{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{z}-\sqrt{x}\right)}\)

\(=\frac{-\sqrt{xy}+\sqrt{xz}+\sqrt{yz}-z}{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{z}-\sqrt{x}\right)}\)

\(=\frac{\sqrt{y}\left(\sqrt{z}-\sqrt{x}\right)-\sqrt{z}\left(\sqrt{z}-\sqrt{x}\right)}{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{z}-\sqrt{x}\right)}\)

\(=\frac{\left(\sqrt{z}-\sqrt{x}\right)\left(\sqrt{y}-\sqrt{z}\right)}{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{z}-\sqrt{x}\right)}\)

9 tháng 8 2016

\(\hept{\begin{cases}x+z=a\\y+z=b\end{cases}}\)\(x-y=\left(x+z\right)-\left(y+z\right)=a-b\)

\(ab=1\Rightarrow b=\frac{1}{a}\)

\(A=VT=\frac{1}{\left(a-b\right)^2}+\frac{1}{a^2}+\frac{1}{b^2}=\frac{1}{\left(a-\frac{1}{a}\right)^2}+\frac{1}{a^2}+a^2\)

\(=\frac{a^2}{\left(a^2-1\right)^2}+a^2+\frac{1}{a^2}\)

\(t=a^2>0\)

\(A=\frac{t}{\left(t-1\right)^2}+t+\frac{1}{t}\)

\(A-4=\frac{\left(t^2-3t+1\right)^2}{t\left(t-1\right)^2}\ge0\)

\(\Rightarrow A\ge4\)

Dấu bằng xảy ra khi \(t=a^2=\frac{3\pm\sqrt{5}}{2}\)\(\Leftrightarrow a=\sqrt{\frac{3\pm\sqrt{5}}{2}}\)

\(\Leftrightarrow\hept{\begin{cases}a=x+z=\sqrt{\frac{3+\sqrt{5}}{2}}\\b=y+z=\sqrt{\frac{3-\sqrt{5}}{2}}\end{cases}}\) và hoán vị còn lại 

Hệ trên có vô số nghiệm, chẳng hạn

\(\hept{\begin{cases}z=\frac{1}{10}\\x=\sqrt{\frac{3+\sqrt{5}}{2}}-\frac{1}{10}\\y=\sqrt{\frac{3-\sqrt{5}}{2}}-\frac{1}{10}\end{cases}}\)

9 tháng 8 2016

giúp với.

mình bị lộn \(\frac{1}{\left(x-y\right)^2}\)

NV
26 tháng 6 2020

Nếu \(\frac{1}{\left(x-y\right)^2}\) thì nó đây:

Câu hỏi của Nguyễn Ngọc Lan - Toán lớp 9 | Học trực tuyến

28 tháng 7 2019

Đặt \(x+z=a;y+z=b\left(a,b\ge0\right)\)=> ab=1

=> \(A=\frac{1}{\left(a-b\right)^2}+\frac{1}{a^2}+\frac{1}{b^2}=\frac{1}{\left(a-b\right)^2}+b^2+a^2\)

                                                            \(=\left(a-b\right)^2+\frac{1}{\left(a-b\right)^2}+2\ge2+2=4\)(Do ab=1)(ĐPCM)

Dấu bằng xảy ra khi \(\hept{\begin{cases}a-b=\pm1\\ab=1\end{cases}}\)=> \(\hept{\begin{cases}x+z=\frac{1+\sqrt{5}}{2}\\y+z=\frac{\sqrt{5}-1}{2}\end{cases}}\)hoặc \(\hept{\begin{cases}x+z=\frac{\sqrt{5}-1}{2}\\y+z=\frac{\sqrt{5}+1}{2}\end{cases}}\)

Đặt \(\hept{\begin{cases}x+z=a\\y+z=b\end{cases}}\)từ giả thiết => ab=1

\(\Rightarrow A=\frac{1}{\left(a-b\right)^2}+\frac{1}{a^2}+\frac{1}{b^2}\)

\(=\frac{1}{a^2+b^2-2}+a^2+b^2=\frac{1}{a^2+b^2-2}+a^2+b^2-2+2\)

Áp dụng bđt AM-GM ta có

\(\frac{1}{a^2+b^2-2}+a^2+b^2-2\ge2\sqrt{\frac{a^2+b^2-2}{a^2+b^2-2}}=2\)

\(\Rightarrow A\ge4\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+z=1\\y+z=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\ge0\\z\ge0\end{cases}}}\)