Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn có thể dùng bđt phụ này để chứng minh
\(\sqrt{a+b+c}\le\sqrt{a}+\sqrt{b}+\sqrt{c}\le\sqrt{3\left(a+b+c\right)}\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)
Áp dụng BĐT AM-GM ta có:
\(2x^2+y^2\ge2\sqrt{2x^2.y^2}=2\sqrt{2}xy\)
\(\Rightarrow\sqrt{2x^2+y^2}\ge\sqrt{2\sqrt{2}xy}=\sqrt{2\sqrt{2}}\sqrt{xy}\)
\(\Rightarrow P=\frac{\sqrt{2x^2+y^2}}{\sqrt{xy}}\ge\frac{\sqrt{2\sqrt{2}}.\sqrt{xy}}{\sqrt{xy}}=\sqrt{2\sqrt{2}}=\)
Vậy minP=\(\sqrt{2\sqrt{2}}\) đạt được khi \(\sqrt{2}x=y\)
ban dung bdt nay di :voi a,b,c ko am ta co
\(\sqrt{a+b+c}=< \sqrt{a}+\sqrt{b}+\sqrt{c}=< \sqrt{3\left(a+b+c\right)}\)
xay ra dau bang khi a=b=c
1.\(N=x^2+\frac{1000}{x}+\frac{1000}{x}\ge3\sqrt[3]{\frac{x^2.1000.1000}{x^2}}\)
\(\Rightarrow N\ge300\)
Dấu "=" xảy ra \(\Leftrightarrow x^3=1000\Leftrightarrow x=10\)
2.\(P=\left(5x+\frac{12}{x}\right)+\left(3y+\frac{16}{y}\right)\ge2\sqrt{60}+2\sqrt{48}=4\sqrt{15}+8\sqrt{3}\)
Dấu "=" xảy ra \(\Leftrightarrow5x=\frac{12}{x};3y=\frac{16}{y}\Leftrightarrow x=\sqrt{\frac{12}{5}};y=\frac{4\sqrt{3}}{3}\)
\(\)
ÁP dụng BĐT : \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\) ta có :
\(\left(\sqrt{4x+3}+\sqrt{4y+3}+\sqrt{4z+3}\right)^2\le3\left(4x+4y+4z+9\right)=3\left(4\left(x+y+z\right)+9\right)=3.13=39\)
=> \(\sqrt{4x+3}+\sqrt{4y+3}+\sqrt{4z+3}\le\sqrt{39}\)
Vậy MAx F = .... tại x = y = z = 1/3
Áp dụng bất đẳng thức Bunyakovsky:
\(NL^2=\left(\sqrt{4x+2\sqrt{x}+1}+\sqrt{4y+2\sqrt{y}+1}+\sqrt{4z+2\sqrt{z}+1}\right)^2\)
\(\le\left(1^2+1^2+1^2\right)\left(4x+2\sqrt{x}+1+4y+2\sqrt{y}+1+4z+2\sqrt{z}+1\right)\)
\(=3\left(4x+4y+4z\right)+3\left(2\sqrt{x}+2\sqrt{y}+2\sqrt{z}\right)+3\left(1+1+1\right)\)
\(=12\left(x+y+z\right)+6\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+9\)
\(=153+6\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
Mặt khác,theo Bunyakovsky: \(\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\le3\left(x+y+z\right)=36\)
\(\Rightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\le6\)
\(\Rightarrow153+6\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\le153+36=189\)
\(\Rightarrow NL\le\sqrt{189}\)
Dấu "=" xảy ra khi: \(x=y=z=4\)
3, \(P=a+b+\frac{1}{2a}+\frac{2}{b}\)
=\(\left(\frac{1}{2a}+\frac{a}{2}\right)+\left(\frac{b}{2}+\frac{2}{b}\right)+\frac{a+b}{2}\)
AD bđt cosi vs hai số dương có:
\(\frac{1}{2a}+\frac{a}{2}\ge2\sqrt{\frac{1}{2a}.\frac{a}{2}}=2\sqrt{\frac{1}{4}}=1\)
\(\frac{b}{2}+\frac{2}{b}\ge2\sqrt{\frac{b}{2}.\frac{2}{b}}=2\)
Có \(\frac{a+b}{2}\ge\frac{3}{2}\) (vì a+b \(\ge3\))
=> \(P=\left(\frac{1}{2a}+\frac{a}{2}\right)+\left(\frac{b}{2}+\frac{2}{b}\right)+\frac{a+b}{2}\ge1+2+\frac{3}{2}\)
<=> P \(\ge4.5\)
Dấu "=" xảy ra <=>\(\left\{{}\begin{matrix}\frac{1}{2a}=\frac{a}{2}\\\frac{b}{2}=\frac{2}{b}\\a+b=3\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}a^2=1\\b^2=4\\a+b=3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}a=1\\b=2\\a+b=3\end{matrix}\right.\)
=> a=2,b=3
Vậy minP=4.5 <=>a=1,b=2
tìm GTLN trừ GTNN hay GTLN riêng và GTNN riêng
riêng nha bạn