K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{4^x}{2^{x+y}}=8\Rightarrow\dfrac{2^{2x}}{2^{x+y}}=2^3\\ \Rightarrow2^{2x-x-y}=2^3\Rightarrow x-y=3\left(1\right)\)

\(\dfrac{9^{x+y}}{3^{5y}}=243\Rightarrow\dfrac{3^{2x+2y}}{3^{5y}}=3^5\\ \Rightarrow3^{2x+2y-5y}=3^5\Rightarrow2x-3y=5\left(2\right)\)

từ (1) và (2) ta có hpt:

\(\left\{{}\begin{matrix}x-y=3\\2x-3y=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\\y=1\end{matrix}\right.\)

vậy cặp số nguyên x,y là 4 và 1

27 tháng 10 2017

Tại sao lại 2^(2x-x-x) lại suy ra x-y = 3?

8 tháng 12 2018

x.y=4 chắc chắn đúng

NV
28 tháng 4 2021

\(B=\dfrac{2^2}{x}+\dfrac{3^2}{y}\ge\dfrac{\left(2+3\right)^2}{x+y}=25\)

\(B_{min}=25\) khi \(\left(x;y\right)=\left(\dfrac{2}{5};\dfrac{3}{5}\right)\)

15 tháng 9 2016

\(\frac{4^x}{2^{x+y}}=8\)

\(\frac{2^{2x}}{2^{x+y}}=2^3\)

\(2x-\left(x+y\right)=3\)

\(x-y=3\)

\(2x-2y=6\)

\(\frac{9^{x+y}}{3^{5y}}=243\)

\(\frac{3^{2x+2y}}{3^{5y}}=3^5\)

\(2x+2y-5y=5\)

\(2x-3y=5\)

mà \(2x-2y=6\)

\(\left(2x-3y\right)-\left(2x-2y\right)=5-6\)

\(-y=-1\)

y = 1

x = 4

Vậy xy = 4

11 tháng 9 2016

\(\frac{4^x}{2^{x+y}}=8\)

\(\frac{2^{2x}}{2^{x+y}}=2^3\)

\(2x-x-y=3\)

\(x-y=3\)

\(2x-2y=6\)

\(\frac{9^{x+y}}{3^{5y}}=243\)

\(\frac{3^{2x+2y}}{3^{5y}}=3^5\)

\(2x+2y-5y=5\)

\(2x-3y=5\)

\(2x-2y=6\)

\(\left(2x-3y\right)-\left(2x-2y\right)=5-6\)

\(-y=-1\)

\(y=1\)

x = 4

x . y = 4

28 tháng 2 2022

\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2xz+2yz=z^2+\left(x+y\right)^2+2z\left(x+y\right)=36\)

áp dụng BĐT cosi : 

\(z^2+\left(x+y\right)^2\ge2z\left(x+y\right)\)

<=> \(z^2+\left(x+y\right)^2+2z\left(x+y\right)\ge4z\left(x+y\right)=36< =>z\left(x+y\right)\ge9\)

ta lại có \(\dfrac{x+y}{xyz}=\dfrac{x}{xyz}+\dfrac{y}{xyz}=\dfrac{1}{yz}+\dfrac{1}{xz}\) áp dụng BĐT buhihacopxki dạng phân thức => \(\dfrac{1}{yz}+\dfrac{1}{xz}\ge\dfrac{4}{yz+xz}=\dfrac{4}{z\left(x+y\right)}\ge\dfrac{4}{9}\left(đpcm\right)\)

dấu bằng xảy ra khi \(\left[{}\begin{matrix}yz=xz< =>x=y\\x+y+z=6\\z^2=\left(x+y\right)^2\end{matrix}\right.< =>\left[{}\begin{matrix}x+y+z=6\\z=2x=2y\end{matrix}\right.< =>\left[{}\begin{matrix}x=y=\dfrac{3}{2}\\z=3\end{matrix}\right.\)

28 tháng 2 2022

-Ủa vì sao\(\dfrac{4}{z\left(x+y\right)}\ge\dfrac{4}{9}\)? Đáng lẽ là \(\dfrac{4}{z\left(x+y\right)}\le\dfrac{4}{9}\) chứ?

NV
16 tháng 2 2022

Đề bài sai, C không có giá trị nhỏ nhất

Nếu \(\dfrac{1}{x^2}+\dfrac{1}{y^2}=\dfrac{1}{2}\) thì có thể tìm được min của C

Ta có: \(Q=\dfrac{2}{x^2+y^2}+\dfrac{3}{xy}=\dfrac{2}{x^2+y^2}+\dfrac{6}{2xy}=\dfrac{2}{x^2+y^2}+\dfrac{2}{2xy}+\dfrac{4}{2xy}\)

Áp dụng BĐT phụ: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

\(\Rightarrow2\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)\ge2\left(\dfrac{4}{x^2+2xy+y^2}\right)=2\left[\dfrac{4}{\left(x+y\right)^2}\right]=2.\dfrac{4}{4}=2\)

Dấu "=" xảy ra khi x=y=1

Áp dụng BĐT phụ: \(ab\le\dfrac{\left(a+b\right)^2}{4}\)

\(\Rightarrow xy\le\dfrac{\left(x+y\right)^2}{4}=\dfrac{2^2}{4}=1\)

Dấu"=" xảy ra khi x=y=1

\(\Rightarrow2xy\le2.1=2\)

\(\Rightarrow\dfrac{4}{2xy}\ge\dfrac{4}{2}=2\)

\(\Rightarrow Q=\dfrac{2}{x^2+y^2}+\dfrac{2}{2xy}+\dfrac{4}{2xy}=\dfrac{2}{x^2+y^2}+\dfrac{3}{xy}\ge2+2=4\)

Dấu"=" xảy ra khi x=y=1