Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{4^x}{2^{x+y}}=8=>2^{2x}=2^3.2^{x+y}=>2^{2x}=2^{3+x+y}\)
\(=>2x=3+x+y=>x=3+y\)(1)
\(\frac{9^{x+y}}{3^{5y}}=243=>3^{3\left(x+y\right)}=3^5.3^{5y}\)
\(=>3^{3x+3y}=3^{5+5y}\)
=>3x + 3y = 5 + 5y
3x - 5 = 2y (2)
Thay (1) vào (2), có:
3.(3+y) - 5 = 2y
9 + 3y - 5= 2y
y = -4
=> x= 3 + -4 = -1
Vậy xy = -1 . (-4) = 4
Độ dài cạnh của tam giác bằng 7 cm và 13 cm
Mà tam giác này cân
=> Cạnh còn lại của tam giác là 7 cm ( Dựa vào bất đẳng thức tam giác 0
Chu ci tam giác là :
7 + 13 + 7 = 27 ( cm )
Vậy chu vi tam giác đó là ; 27 cm
TH1:Cạnh đáy bằng 7 cm
Chu vi của hình tam cân đó là :
13x2+7=33(cm)
TH2:Cạnh đáy bằng 13 cm
Chu vi của hình tam giác cân đó là :
7x2+13=27(cm)
Giả sử : \(y=ax\)
Thay vào giả thiết : \(\frac{ax}{x+ax}+\frac{2\left(ax\right)^2}{x^2+\left(ax\right)^2}+\frac{4\left(ax\right)^4}{x^4+\left(ax\right)^4}+\frac{8\left(ax\right)^8}{x^8-\left(ax\right)^8}=4\)
\(\Leftrightarrow\frac{x.a}{x.\left(a+1\right)}+\frac{x^2.2a^2}{x^2\left(1+a^2\right)}+\frac{x^4.4a^4}{x^4\left(1+a^4\right)}+\frac{x^8.8a^8}{x^8\left(1-a^8\right)}=4\)
\(\Leftrightarrow\frac{a}{a+1}+\frac{2a^2}{a^2+1}+\frac{4a^4}{a^4+1}+\frac{8a^8}{1-a^8}=4\)
Tới đây bạn giải ra , tìm a rồi thay vào y = ax là ra :)
-.- , lầy lầy , giúp chị thì giúp , chứ chị không hiền như Na đâu nhá :)
\(\frac{4^x}{2^{x+y}}=8\)
\(\frac{2^{2x}}{2^{x+y}}=2^3\)
\(2x-\left(x+y\right)=3\)
\(x-y=3\)
\(2x-2y=6\)
\(\frac{9^{x+y}}{3^{5y}}=243\)
\(\frac{3^{2x+2y}}{3^{5y}}=3^5\)
\(2x+2y-5y=5\)
\(2x-3y=5\)
mà \(2x-2y=6\)
\(\left(2x-3y\right)-\left(2x-2y\right)=5-6\)
\(-y=-1\)
y = 1
x = 4
Vậy xy = 4