K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2021

\(x=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{99}{100}=\dfrac{1.3}{2^2}+\dfrac{2.4}{3^2}+\dfrac{3.5}{4^2}+...+\dfrac{9.11}{10^2}=\dfrac{1.2.3...9}{2.3.4...10}.\dfrac{3.4.5...11}{2.3.4...10}=\dfrac{1}{10}.\dfrac{11}{2}=\dfrac{11}{20}\)

21 tháng 6 2016

\(\frac{4}{3}.\frac{9}{8}.\frac{16}{15}...\frac{81}{80}.\frac{100}{99}=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{9^2}{8.10}.\frac{10^2}{9.11}=\frac{2.10}{11}=\frac{20}{11}\)

Phân tích ra rồi rút gọn từ trên tử xuống dưới mẫu là xong

15 tháng 8 2021

bạn ghi rõ ra hơn thì mik mới hiểu đề đc

17 tháng 10 2018

\(C=\frac{3.8.15....80.99}{4.9.16.81.100}\)

\(=\frac{1.3.2.4.3.5...8.10.9.11}{2.2.3.3.4.4...9.9.10.10}\)

\(=\frac{\left(1.2.3....9\right).\left(3.4.5...10.11\right)}{\left(2.3.4.5...10\right).\left(2.3.4...10\right)}\)

\(=\frac{11}{10}\)

17 tháng 10 2018

trả lời 

c=\(\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot....\cdot\frac{99}{100}\)

C=\(\frac{3.8.15....99}{4.9.16.100}\)

C=\(\frac{1.3.2.4.3.5.....9.11}{2.2.3.3.4.4....10.10}\)

C=\(\frac{\left(1.2.....9\right)}{2.3....10}.\left(\frac{3.4....11}{2.3...10}\right)\)

C=\(\frac{1}{10}\cdot\frac{11}{2}=\frac{11}{20}\)

28 tháng 6 2016

=\(\frac{2x4}{3x3}x\frac{3x5}{4x4}x\frac{4x6}{5x5}x...x\frac{9x11}{10x10}\)

=\(\frac{\left(2x3x4x5x6x..x9\right)x\left(4x5x6x...x11\right)}{\left(3x4x5x6x7x8x9x10\right)x\left(3x4x5x...x10\right)}\)

=\(\frac{2x11}{10x3}=\frac{22}{30}=\frac{11}{15}\)

27 tháng 8 2017

Các bạn giúp mình với mình đang cần gấp lắm

27 tháng 8 2017

\(\frac{7}{3}.9-\frac{9}{4}.5+\frac{11}{5}.6-\frac{13}{6}.7+\frac{15}{7}.8-\frac{17}{8}.9+\frac{19}{9}.10\)

\(=21-\frac{45}{4}+\frac{66}{5}-\frac{91}{6}+\frac{120}{7}-\frac{153}{8}+\frac{190}{9}\)

\(=26,91230159\)

AH
Akai Haruma
Giáo viên
16 tháng 7 2023

Lời giải:

$A=(1-\frac{1}{4})+(1-\frac{1}{9})+(1-\frac{1}{16})+....+(1-\frac{1}{10000})$

$=(1+1+...+1)-(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+....+\frac{1}{10000})$

$=99-(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+....+\frac{1}{10000})< 99$