Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\sqrt{2008+2\sqrt{2007}}=\sqrt{2007+2\sqrt{2007}+1}=\sqrt{\left(\sqrt{2007}+1\right)^2}=\sqrt{2007}+1\)
\(\sqrt{\left(1-\sqrt{2007}\right)^2}=\sqrt{2007}-1\)
Suy ra \(C=2\sqrt{2007}\)
Từ \(x^2-2xy+2y^2-2x+6y+5=0\)
\(\Rightarrow\left(x^2-2xy-2x+y^2+2y+1\right)+\left(y^2+4y+4\right)=0\)
\(\Rightarrow\left(x-y-1\right)^2+\left(y+2\right)^2=0\)
\(\Rightarrow\left\{\begin{matrix}\left(x-y-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)
Thay vào ta có: \(\frac{3x^2y-1}{4xy}=\frac{3\cdot\left(-1\right)^2\cdot\left(-2\right)-1}{4\cdot\left(-1\right)\cdot\left(-2\right)}=-\frac{7}{8}\)
ta có : \(x^2-2xy+2y^2-2x+6y+5=0\)
<=>\(\left(x^2+y^2+1-2xy+2y-2x\right)+\left(y^2+4y+4\right)=0\)
<=>\(\left(x-y-1\right)^2+\left(y+2\right)^2=0\)
<=> x-y-1=0 và y+2=0
=> y=-2;x=-1
Vậy \(3x^2y-\frac{1}{4}xy=-6,5\)
Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)
\(=\left(x+y\right)^3=1^3=1\)
Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)
\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)
Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)
\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)
\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)
\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)
\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)
2x2+2y2=5xy
<=>2x2-5xy+2y2=0
<=>(2x2-4xy)-(xy-2y2)=0
<=>2x(x-2y)-y(x-2y)=0
<=>(x-2y)(2x-y)=0
<=> x-2y=0 hoặc 2x-y=0
*)Nếu x-2y=0=>x=2y
=>E=\(\frac{x+y}{x-y}=\frac{2y+y}{2y-y}=\frac{3y}{y}=3\)
*)Nếu 2x-y=0=>2x=y
=>E=\(\frac{x+y}{x-y}=\frac{x+2x}{x-2x}=\frac{3x}{-x}=-3\)
Ta có: x>y>0
\(\Rightarrow\hept{\begin{cases}x+y>0\\x-y>0\end{cases}}\)
\(\Rightarrow E=\frac{x+y}{x-y}>0\)
Ta có : E\(=\frac{x+y}{x-y}\)
\(\Rightarrow E^2=\frac{\left(x+y\right)^2}{\left(x-y\right)^2}=\frac{x^2+2xy+y^2}{x^2-2xy+y^2}=\frac{2\left(x^2+2xy+y^2\right)}{2\left(x^2-2xy+y^2\right)}=\frac{2x^2+4xy+2y^2}{2x^2-4xy+2y^2}\)\(=\frac{5xy+4xy}{5xy-4xy}=\frac{9xy}{xy}=9\)
\(\Rightarrow E=\sqrt{9}\)( do E>0)
\(\Leftrightarrow E=3\)
Theo bài ra, ta có: \(x^2-y=y^2-x\Leftrightarrow x^2-y^2=-x+y\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=-\left(x-y\right)\)
\(\Leftrightarrow\left(x+y\right)=-1\)
Ta lại có: \(A=x^2+2xy+y^2-3x-3y=\left(x+y\right)^2-3\left(x+y\right)\)
Thay x+y=-1 vào biểu thức A, ta được: \(A=\left(-1\right)^2-3.\left(-1\right)=1+3=4\)
Vậy A=4
Mọi người tk mình đi mình đang bị âm nè!!!!!!
Ai tk mình mình tk lại nha !!!
\(x^2+2x-2=0\Rightarrow\left\{{}\begin{matrix}x^2+2x+1=3\\x^2=2-2x\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=3\\x^4=4x^2-8x+4\end{matrix}\right.\)
Thay vào biểu thức:
\(M=x^4+16x+2007=4x^2-8x+4+16x+2007\)
\(\Rightarrow M=4x^4+8x+4+2007=4\left(x+1\right)^2+2007=4.3+2007=2019\)
M = (x4 + 2x3 - 2x2) - (2x3 + 4x2 - 4x) + (6x2 + 12x - 12) + 2019
M = x2(x2 + 2x - 2) - 2x(x2 + 2x - 2) + 6(x2 + 2x - 2) + 2019
M = 0 + 0 + 0 + 2019
M = 2019