Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3) Q=(3+1)(3^2+1)(3^4+1)....(3^3994+1)
=(3-1)(3+1)(3^2+1)(3^4+1)...(3^3994+1)
=(3^2-1)(3^2+1)(3^4+1)...(3^3994+1)
=(3^4-1)(3^4+1)...(3^3994+1)
=.........
=(3^3994-1)(3^3994+1)
=3^7988-1
\(C=\dfrac{\sqrt{x}-\sqrt{x+1}}{-1}+\dfrac{\sqrt{x+1}-\sqrt{x+2}}{-1}+...+\dfrac{\sqrt{x+2007}-\sqrt{x+2008}}{-1}\)
\(=-\sqrt{x}+\sqrt{x+1}-\sqrt{x+1}+\sqrt{x+2}-...-\sqrt{x+2007}+\sqrt{x+2008}\)\(=-\sqrt{x}+\sqrt{x+2008}\)
\(C=-\sqrt{\sqrt[2007]{2008}}+\sqrt{\sqrt[2007]{2008}+2008}\)
\(\sqrt{2007+2008\sqrt{1-x}}=1+\sqrt{2007-2008\sqrt{1-x}}\left(x\le1\right)\)
\(\Leftrightarrow2007+2008\sqrt{1-x}=1+2007-2008\sqrt{1-x}+2\sqrt{2007-2008\sqrt{1-x}}\)
\(\Leftrightarrow2.2008\sqrt{1-x}=2\sqrt{2007-2008\sqrt{1-x}}+1\)
Đặt \(2008\sqrt{1-x}=y\ge0\)
Suy ra phương trình (1) tương đương với : \(2y-1=2\sqrt{2007-y}\Leftrightarrow4y^2-4y+1=4\left(2007-y\right)\Leftrightarrow4y^2=8027\Rightarrow y=\frac{\sqrt{8027}}{2}\)(nhận) hoặc \(y=-\frac{\sqrt{8027}}{2}\)(loại)
Từ đó suy ra \(x=\frac{16120229}{16128256}\)
Vậy \(x=\frac{16120229}{16128256}\)là nghiệm của phương trình.
Bài này nếu mình nhớ không nhầm thì nằm trong đề thi Toán Casio đúng không bạn? :))
\(x^2+2x-2=0\Rightarrow\left\{{}\begin{matrix}x^2+2x+1=3\\x^2=2-2x\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=3\\x^4=4x^2-8x+4\end{matrix}\right.\)
Thay vào biểu thức:
\(M=x^4+16x+2007=4x^2-8x+4+16x+2007\)
\(\Rightarrow M=4x^4+8x+4+2007=4\left(x+1\right)^2+2007=4.3+2007=2019\)
12 = (x+ y + z)2 = x2 + y2 + z2 + 2(xy + yz + zx) = 1+ 2(xy + yz+ zx) => xy + yz + zx= 0
1 = (x+y+z)3 = (x + y)3 + z3 + 3(x+ y+z)z(x+ y) = x3 + y3 + z3 + 3xy(x+ y) + 3(x+ y)z
= 1 + 3xy(1 - z) + 3(xz + yz) = 1 - 3xyz + 3(xy + xz + yz) = 1 - 3xyz (do xy + xz + yz = 0 )
=> xyz = 0
+) 0 = (xy + yz + zx)2 = x2y2 + y2z2 + z2x2 + 2xyz. (y + x + z) = x2y2 + y2z2 + z2x2
=> x2y2 + y2z2 + z2x2 = 0 => xy = 0 và yz = 0 và zx = 0 => có 2 trong 3 số x; y; z = 0 và số còn lại bằng 1 (vì x + y + z = 1)
=> P = 1
Ta có : \(\sqrt{2008+2\sqrt{2007}}=\sqrt{2007+2\sqrt{2007}+1}=\sqrt{\left(\sqrt{2007}+1\right)^2}=\sqrt{2007}+1\)
\(\sqrt{\left(1-\sqrt{2007}\right)^2}=\sqrt{2007}-1\)
Suy ra \(C=2\sqrt{2007}\)