Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo định lý Viéte kết hợp với giả thiết ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}>0\\x_1x_2=\frac{c}{a}>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}ab< 0\\ac>0\end{matrix}\right.\)
Ta cần chứng minh: \(\left\{{}\begin{matrix}x_3+x_4=\frac{-b}{c}>0\\x_3x_4=\frac{a}{c}>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}bc< 0\\ac>0\end{matrix}\right.\) (*)
TH1: \(a>0\Leftrightarrow\left\{{}\begin{matrix}c>0\\b< 0\end{matrix}\right.\) \(\Leftrightarrow\) (*) luôn đúng
TH2: \(a< 0\Leftrightarrow\left\{{}\begin{matrix}c< 0\\b>0\end{matrix}\right.\) \(\Leftrightarrow\) (*) luôn đúng
Ta có đpcm.
Áp dụng BĐT Cauchy:
\(x_1+x_2+x_3+x_4\ge4\sqrt[4]{x_1x_2x_3x_4}=4\sqrt[4]{\frac{c}{a}\cdot\frac{a}{c}}=4\)
Dấu "=" xảy ra khi \(x_1=x_2=x_3=x_4\) \(\Leftrightarrow a=c\)
\(ax^2+bx+c=0\) (1) có 2 nghiệm dương \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=b^2-4ac\ge0\\x_1+x_2=-\frac{b}{a}>0\\x_1x_2=\frac{c}{a}>0\end{matrix}\right.\)
Xét \(cx^2+bx+a=0\) (2)
\(\Delta=b^2-4ac\ge0\Rightarrow\left(2\right)\) có 2 nghiệm
\(\left\{{}\begin{matrix}x_3+x_4=-\frac{b}{c}\\x_3x_4=\frac{a}{c}>0\end{matrix}\right.\)
Do \(\left\{{}\begin{matrix}-\frac{b}{a}>0\\\frac{c}{a}>0\end{matrix}\right.\) \(\Rightarrow\left(-\frac{b}{a}\right):\left(\frac{c}{a}\right)>0\Rightarrow-\frac{b}{c}>0\)
\(\Rightarrow\) (2) cũng có 2 nghiệm dương
Do \(\left\{{}\begin{matrix}-\frac{b}{a}>0\\\frac{c}{a}>0\end{matrix}\right.\) \(\Rightarrow a;c\) cùng dấu và trái dấu b
Ko mất tính tổng quát, giả sử \(a;c>0\) và \(b< 0\) ; đặt \(d=-b>0\)
\(\Rightarrow d^2\ge4ac\Rightarrow d\ge2\sqrt{ac}\)
\(A=x_1+x_2+x_3+x_4=-\frac{b}{a}-\frac{b}{c}=\frac{d}{a}+\frac{d}{c}=d\left(\frac{1}{a}+\frac{1}{c}\right)\)
\(A\ge2d\sqrt{\frac{1}{ac}}\ge2.2\sqrt{ac}.\sqrt{\frac{1}{ac}}=4\) (đpcm)
Dấu "=" xảy ra khi \(a=c=\frac{1}{2}d\) hay \(a=c=-\frac{1}{2}b\)
đặt x^2=t =>pt<=> t^2-5t+3=0 =>đen ta =25-12=13
giai ra t rồi tìm x có 4nghiệm