K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2018

Lamborghini Aventardo VSJ chứ

21 tháng 10 2018

Giải được một bài thôi,bạn thông cảm!

b)Ta có:  \(Q_{min}=x^2+y^2-xy=x^2-xy+y^2=\left(x-y\right)^2=2^2=4\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=2\\y=0\end{cases}}\)

25 tháng 2 2022

\(A-B=2x^2y+xy+4-7xy^2+8xy^2+xy-4x^2y-2\)

\(=-2x^2y+2xy+2+xy^2\)

bậc 3 

\(A+B=2x^2y+xy+4-7xy^2-8xy^2-xy+4x^2y+2\)

\(=6x^2y-15xy^2+6\)

bậc 3

25 tháng 2 2022

giải câu a trước rồi làm câu b chứ bro

14 tháng 6 2017

\(x-y=2\Rightarrow x=2+y\)

a) Thay x = 2+y vào P:

\(P=\left(2+y\right)y+4\)

\(=2y+y^2+4\)

\(=2\left(y^2+y+4\right)\)

\(=2\left(y^2+\dfrac{1}{2}y+\dfrac{1}{2}y+4\right)\)

\(=2\left[\left(y+\dfrac{1}{2}\right)^2+\dfrac{15}{4}\right]\)

\(=2\left(y+\dfrac{1}{2}\right)^2+\dfrac{15}{2}\)

\(2\left(y+\dfrac{1}{2}\right)^2\ge0\Rightarrow2\left(y+\dfrac{1}{2}\right)^2+\dfrac{15}{2}\ge\dfrac{15}{2}\)

Dấu "=" xảy ra khi \(\left(y+\dfrac{1}{2}\right)^2=0\)

\(\Rightarrow y=\dfrac{-1}{2}\)

Khi đó: \(x=\dfrac{-1}{2}+2=\dfrac{3}{2}\)

Vậy ...

14 tháng 6 2017

Ta có \(x-y=2\Rightarrow x=y+2\)

a,Thay x=y+2 vào P ta được:

\(P=y\left(y+2\right)+4=y^2+2y+4=\left(y+1\right)^2+3\ge3\)

Vậy GTNN của P = 3 khi y=-1 và x=1

b,Cũng thay như thế ta được

\(Q=\left(y+2\right)^2+y^2-y\left(y+2\right)=y^2+2y+4\)

Vậy GTNN của Q=3 khi y=-1 và x=1

23 tháng 3 2017

2,

M + N = 3xyz - 3x2 + 5xy - 1 + 5x2 + xyz - 5xy + 3 - y

= -3x2 + 5x2 + 3xyz + xyz + 5xy - 5xy - y - 1 + 3

= 2x2 + 4xyz - y +2.

M - N = (3xyz - 3x2 + 5xy - 1) - (5x2 + xyz - 5xy + 3 - y)

= 3xyz - 3x2 + 5xy - 1 - 5x2 - xyz + 5xy - 3 + y

= -3x2 - 5x2 + 3xyz - xyz + 5xy + 5xy + y - 1 - 3

= -8x2 + 2xyz + 10xy + y - 4.

N - M = (5x2 + xyz - 5xy + 3 - y) - (3xyz - 3x2 + 5xy - 1)

= 5x2 + xyz - 5xy + 3 - y - 3xyz + 3x2 - 5xy + 1

= 5x2 + 3x2 + xyz - 3xyz - 5xy - 5xy - y + 3 + 1

= 8x2 - 2xyz - 10xy - y + 4.

3,

a) P + (x2 – 2y2) = x2 – y2 + 3y2 – 1

P = (x2 – y2 + 3y2 – 1) - (x2 – 2y2)

P = x2 – y2 + 3y2 – 1 - x2 + 2y2

P = x2 – x2 – y2 + 3y2 + 2y2 – 1

P = 4y2 – 1.

Vậy P = 4y2 – 1.

b) Q – (5x2 – xyz) = xy + 2x2 – 3xyz + 5

Q = (xy + 2x2 – 3xyz + 5) + (5x2 – xyz)

Q = xy + 2x2 – 3xyz + 5 + 5x2 – xyz

Q = 7x2 – 4xyz + xy + 5

Vậy Q = 7x2 – 4xyz + xy + 5.

4,

a, Thu gọn : x2+2xy-3x3+2y3+3x3-y3

= x2+2xy+(-3x3+3x3)+2y3-y3

=x2+2xy+2y3-y3

Thay x=5,y=4 vào đa thức x2+2xy+2y3-y3 Ta có:

52 + 2.5.4 + 43 = 25 + 40 + 64 = 129.

Vậy giá trị của đa thức x2+2xy+2y3-y3 tại x=5,y=4 là 129

b,

Thay x = -1; y = -1 vào biểu thức xy-x2y2+x4y4-x6y6+x8y8 Ta Có

M = (-1)(-1) - (-1)2.(-1)2 + (-1)4. (-1)4-(-1)6.(-1)6 + (-1)8.(-1)8

= 1 -1 + 1 - 1+ 1 = 1.

Vậy giá trị của biểu thức xy-x2y2+x4y4-x6y6+x8y8 tại x=-1, y=-1 là 1

5,

a, C=A+B

C = x2 – 2y + xy + 1 + x2 + y - x2y2 - 1

C = 2x2 – y + xy - x2y2

b) C + A = B => C = B - A

C = (x2 + y - x2y2 - 1) - (x2 – 2y + xy + 1)

C = x2 + y - x2y2 - 1 - x2 + 2y - xy - 1

C = - x2y2 - xy + 3y - 2.


16 tháng 3 2017

dễ mà , có khó đâu bạn

AH
Akai Haruma
Giáo viên
24 tháng 10 2018

Lời giải:

Thay \(x=y+2\) ta có:

a)

\(P=xy+4=(y+2)y+4=y^2+2y+4=(y+1)^2+3\)

\(\geq 0+3=3\)

Vậy GTNN của $P$ là $3$ khi \(y+1=0\Leftrightarrow y=-1; x=1\)

b)

\(Q=x^2+y^2-xy=(y+2)^2+y^2-(y+2)y\)

\(=y^2+2y+4=(y+1)^2+3\geq 0+3=3\)

Vậy GTNN của $Q$ là $3$ khi \(y+1=0\Leftrightarrow y=-1; x=1\)

loading...  loading...