Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x-y=2\Rightarrow x=2+y\)
a) Thay x = 2+y vào P:
\(P=\left(2+y\right)y+4\)
\(=2y+y^2+4\)
\(=2\left(y^2+y+4\right)\)
\(=2\left(y^2+\dfrac{1}{2}y+\dfrac{1}{2}y+4\right)\)
\(=2\left[\left(y+\dfrac{1}{2}\right)^2+\dfrac{15}{4}\right]\)
\(=2\left(y+\dfrac{1}{2}\right)^2+\dfrac{15}{2}\)
Vì \(2\left(y+\dfrac{1}{2}\right)^2\ge0\Rightarrow2\left(y+\dfrac{1}{2}\right)^2+\dfrac{15}{2}\ge\dfrac{15}{2}\)
Dấu "=" xảy ra khi \(\left(y+\dfrac{1}{2}\right)^2=0\)
\(\Rightarrow y=\dfrac{-1}{2}\)
Khi đó: \(x=\dfrac{-1}{2}+2=\dfrac{3}{2}\)
Vậy ...
Ta có \(x-y=2\Rightarrow x=y+2\)
a,Thay x=y+2 vào P ta được:
\(P=y\left(y+2\right)+4=y^2+2y+4=\left(y+1\right)^2+3\ge3\)
Vậy GTNN của P = 3 khi y=-1 và x=1
b,Cũng thay như thế ta được
\(Q=\left(y+2\right)^2+y^2-y\left(y+2\right)=y^2+2y+4\)
Vậy GTNN của Q=3 khi y=-1 và x=1
\(Q=x^2+y^2+xy=\left(x^2+y^2-2xy\right)+3xy=\left(x-y\right)^2+3xy=3xy+4\)
\(x-y=2\Rightarrow y=x-2\)thay vào Q ta được :
\(Q=3x\left(x-2\right)+4=3\left(x^2-2x\right)+4=3\left[\left(x^2-2x+1\right)-1\right]+4=3\left(x-1\right)^2+1\)
Vì \(3\left(x-1\right)^2\ge0\forall x\) nên \(Q=3\left(x-1\right)^2+1\ge1\forall x\)
Dấu "=" xảy ra <=> \(x=1\Rightarrow y=-1\)
Vậy GTNN của Q là 1 tại \(x=1;y=-1\)
Lời giải:
Thay \(x=y+2\) ta có:
a)
\(P=xy+4=(y+2)y+4=y^2+2y+4=(y+1)^2+3\)
\(\geq 0+3=3\)
Vậy GTNN của $P$ là $3$ khi \(y+1=0\Leftrightarrow y=-1; x=1\)
b)
\(Q=x^2+y^2-xy=(y+2)^2+y^2-(y+2)y\)
\(=y^2+2y+4=(y+1)^2+3\geq 0+3=3\)
Vậy GTNN của $Q$ là $3$ khi \(y+1=0\Leftrightarrow y=-1; x=1\)
a: P(1)=2-3-4=-5
b: \(P\left(x\right)+Q\left(x\right)=3x^2-6x+1\)
\(P\left(x\right)-Q\left(x\right)=x^2-9\)
c: Đặt H(x)=0
=>(x-3)(x+3)=0
=>x=3 hoặc x=-3
TA CÓ: \(B-\left(x^2+xy+y^2\right)=2x^2-xy+y^2\)
\(\Rightarrow B=\left(2x^2-xy+y^2\right)+\left(x^2+xy+y^2\right)\)
\(B=2x^2-xy+y^2+x^2+xy+y^2\)
\(B=\left(2x^2+x^2\right)+\left(y^2+y^2\right)+\left(xy-xy\right)\)
\(B=3x^2+2y^2\)
TA CÓ: \(\left(\frac{1}{2}.xy+x^2-\frac{1}{2}x^2y\right)-C=-xy+x^2y+1\)
\(\Rightarrow C=\left(\frac{1}{2}xy+x^2-\frac{1}{2}x^2y\right)-\left(-xy+x^2y+1\right)\)
\(C=\frac{1}{2}xy+x^2-\frac{1}{2}x^2y+xy-x^2y-1\)
\(C=\left(\frac{1}{2}xy+xy\right)+\left(\frac{-1}{2}x^2y-x^2y\right)+x^2-1\)
\(C=\frac{3}{2}xy+\frac{-3}{2}x^2y+x^2-1\)
mk nha