K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2015

bgggggggggggggggggggggytttttttttttrcccccccccceeeeeeeeeeeeedx

25 tháng 3 2016

rtyuiuydghfrtghhfrfghhgfghjhg

21 tháng 7 2015

Đặt t=x−z, dễ thấy 0≤t≤x−y⇒t=k(x−y),k∈[0;1]. Ta có:

f(x)+f(y)−f(z)−f(x+y−z)=f(x)+f(y)−f(x−t)−f(y+t)=f(x)+f(y)−f(x−k(x−y))−f(y+k(x−y))=f(x)+f(y)−f((1−k)x+ky)−f(kx+(1−k)y)≥f(x)+f(y)−(1−k)f(x)−kf(y)−kf(x)−(1−k)f(y)=0(Q.E.D

20 tháng 11 2021

Áp dụng tc dtsbn:

\(\dfrac{x}{2013}=\dfrac{y}{2014}=\dfrac{z}{2015}=\dfrac{x-z}{-2}=\dfrac{y-z}{-1}=\dfrac{x-y}{-1}\\ \Leftrightarrow\dfrac{x-z}{2}=\dfrac{y-z}{1}=\dfrac{x-y}{1}\\ \Leftrightarrow x-z=2\left(y-z\right)=2\left(x-y\right)\\ \Leftrightarrow\left(x-z\right)^3=8\left(x-y\right)^3=8\left(x-y\right)^2\left(x-y\right)=8\left(x-y\right)^2\left(y-z\right)\)

10 tháng 12 2018

Giải :

Đặt \(\frac{x}{2013}=\frac{y}{2014}=\frac{z}{2015}=k\Rightarrow\hept{\begin{cases}x=2013k\\y=2014k\\z=2015k\end{cases}}\)

Khi đó, ta có : 4(2013k - 2014k)(2014k - 2015k) = 4. (-k).(-k) = 4.k2   (1)

                      (2015k - 2013k)2 = (2k)2 = 22.k2 = 4k2                          (2)

Từ (1) và (2) suy ta 4(x - y)(y - z) = (z - x)2

10 tháng 12 2018

huhu!... Mk biết làm roi nha mb :>))

28 tháng 10 2021

Ta có : x/z = z/y ( y,z khác 0 )

⇒ z^2 = xy

⇒ x^2+z^2/y^2+z^2 = x^2+xy/y^2+xy

= x(x + y) / y(y + x)

= x/y

Vậy x^2+z^2/y^2+z^2 = x/y

( đpcm )

30 tháng 10 2019

Đặt \(\frac{x}{z}=\frac{z}{y}=k\)

\(\Rightarrow\hept{\begin{cases}x=zk\\z=yk\end{cases}}\)

Khi đó : \(\frac{x^2+z^2}{y^2+z^2}=\frac{\left(zk\right)^2+z^2}{y^2+\left(yk\right)^2}=\frac{z^2\left(k^2+1\right)}{y^2\left(k^2+1\right)}=\frac{z^2}{y^2}=\frac{\left(y.k\right)^2}{y^2}=k^2\)

\(\frac{x}{y}=\frac{y.k^2}{y}=k^2\)

=> \(\frac{x^2+z^2}{y^2+z^2}=\frac{x}{y}\left(\text{đpcm}\right)\)

30 tháng 10 2019

\(\frac{x}{z}=\frac{z}{y}\)

cmr: \(\left(\frac{x^2+z^2}{y^2+z^2}\right)=\frac{x}{y}\)

\(\frac{x}{z}=\frac{z}{y}\Rightarrow\left(\frac{x}{z}\right)^2=\left(\frac{z}{y}\right)^2\)

áp dụng t/c dãy tỉ số = nhau

\(\left(1\right)\left(\frac{x}{z}\right)^2=\left(\frac{z}{y}\right)^2=\frac{\left(x^2+z^2\right)}{\left(z^2+y^2\right)}\)

vì \(\left(2\right)\frac{x}{z}=\frac{z}{y}\Rightarrow\frac{x}{y}=\frac{z}{z}\)

từ (1) và (2) =>\(\left(\frac{x^2+z^2}{y^2+z^2}\right)=\frac{x}{y}\)