Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho điểm M(-4;2) và vecto v =(3;-1). Tìm điểm N biết M là ảnh của N qua phép tịnh tiến theo vecto v.
\(T_{\overrightarrow{v}}\left(N\right)=M\Rightarrow\overrightarrow{NM}=\overrightarrow{v}\)
\(\Rightarrow\left\{{}\begin{matrix}x_N+3=-4\\y_N-1=2\end{matrix}\right.\) \(\Rightarrow N\left(-7;3\right)\)
\(T_{\overrightarrow{v}}\left(M\right)=M_1\Rightarrow\left\{{}\begin{matrix}x_{M1}=3+1=4\\y_{M1}=2+5=7\end{matrix}\right.\) \(\Rightarrow M_1\left(4;7\right)\)
\(Q_{\left(0;90^0\right)}\left(M_1\right)=M_2\Rightarrow\left\{{}\begin{matrix}x_{M2}=-y_{M1}=-7\\y_{M2}=x_{M1}=4\end{matrix}\right.\)
Vậy ảnh của điểm M qua 2 phép dời hình nói trên là \(M_2\left(-7;4\right)\)
a) M(-1;1) đối xứng qua trục Oy ta được N(-1;1).
Gọi M'(x;y) là ảnh của N(-1;1) qua phép tịnh tiến theo vectơ v → = ( 2 ; 0 )
b) Gọi P(x;y) là ảnh của M(1;1) qua phép tịnh tiến theo v → = ( 2 ; 0 )
P(3;1) đối xứng qua trục Oy ta được M"(-3;1)
Gọi M N, lần lượt là ảnh của các điểm A(3;5), B(-1;1) qua phép tịnh tiến theo véc-tơ v=(-1;2) . Tính độ dài MN.
Giải
Phép tịnh tiến theo vecto v biến điểm A thành điểm M là:
\(\left\{{}\begin{matrix}x_M=x_A+x_v=3-1=2\\y_M=y_A+y_v=5+2=7\end{matrix}\right.\)
=> M (2,7).
Phép tịnh tiến theo vecto v biến điểm B thành điểm N là:
\(\left\{{}\begin{matrix}x_N=x_B+x_v=-1-1=-2\\y_N=y_B+y_v=1+2=3\end{matrix}\right.\)
=> N (-2,3).
Độ dài vecto MN bằng: \(\sqrt{\left(x_N-x_M\right)^2+\left(y_N-y_M\right)^2}=\)\(4\sqrt{2}\)
c) Đường thẳng d có vecto pháp tuyến là n→(1;-2) nên 1 vecto chỉ phương của d là(2; 1)
=> Vecto v→ không cùng phương với vecto chỉ phương của đường thẳng d
=> Qua phép tịnh tiến v→ biến đường thẳng d thành đường thẳng d’ song song với d.
Nên đường thẳng d’ có dạng : x- 2y + m= 0
Lại có B(-1; 1) d nên B’(-2;3) d’
Thay tọa độ điểm B’ vào phương trình d’ ta được:
-2 -2.3 +m =0 ⇔ m= 8
Vậy phương trình đường thẳng d’ là:x- 2y + 8 = 0