K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2019

Đáp án A

Gọi O là tâm của tam giác  B C D ⇒ O A ⊥ B C D

Mà A M N ⊥ B C D suy ra MN luôn đi qua điểm O.

Đặt B M = x , B N = y ⇒ S Δ B M N = 1 2 . B M . B N . sin M B N ^ = 3 4 x y .

Tam giác ABO vuông tại O

Suy ra thể tích tứ diện ABMN là V = 1 3 . O A . S Δ B M N = 2 12 x y .

Mà MN đi qua trọng tâm của Δ B C D ⇒ 3 x y = x + y .  

Do đó:

x y ≤ x + y 2 4 = 9 x y 2 4 ⇔ 1 2 ≥ x y ≥ 4 9 → V 1 = 2 24 ; V 2 = 2 27 .

Vậy  V 1 + V 2 = 17 2 216 .

19 tháng 4 2017

Đáp án A

19 tháng 6 2018

Đáp án A

Nối  chia khối tứ diện ABCD thành hai khối đa diện gồm PQD.NMB và khối đa diện chứa đỉnh A có thể tích A.

Dễ thấy P,Q lần lượt là trọng tâm của ∆BCE, ∆ABE

Gọi S là diện tích

Họi h là chiều cao của tứ diện ABCD

 Khi đó 

Suy ra

 

24 tháng 2 2017

Chọn đáp án A.

4 tháng 1 2018

16 tháng 7 2019

 

Do tam giác OAB đều cạnh a suy ra F là trung điểm OB =>  O F = a 2

Đẳng thức xảy ra khi và chỉ khi 

Chọn B.

22 tháng 5 2018

Đáp án B

Ta có

A F ⊥ O B , A F ⊥ M O ⇒ A F ⊥ M O B ⇒ A F ⊥ M B

  M B ⊥ A E nên  M B ⊥ A E F ⇒ M B ⊥ E F   .

Suy ra Δ M O B ∽ Δ M E N  , mà Δ M E N ∽ Δ F O N nên Δ M O B ∽ Δ F O N . Khi đó  O B O M = O N O F ⇒ O N = O B . O F O M = a . a 2 x = a 2 2 x   .

Từ

V A B M N = V M . O A B + V N . O A B = 1 3 . S Δ O A B . O M + O N = 1 3 . a 2 3 4 . x + a 2 2 x

⇒ V A B M N = a 2 3 12 x + a 2 2 x ≥ a 2 3 12 .2 x . a 2 2 x = a 2 3 12 . 2 a = a 3 6 12

Dấu “=” xảy ra

⇔ x = a 2 2 x ⇔ 2 x 2 = a 2 ⇔ x = a 2 2 .

24 tháng 4 2019

Đáp án D

24 tháng 4 2017

28 tháng 1 2019

Đáp án A

Đặt S M S A = x , vì mặt phẳng M N P Q song song với đáy

Suy ra M N A B = N P B C = P Q C D = M Q A D = x ( định lí Thalet).

Và d M ; A B C D d S ; A B C D = M A S A = 1 − S M S A = 1 − x ⇒ M M ' = 1 − x   × h .

Mặt khác d t   M N P Q = x 2 × d t A B C D nên thể tích khối đa diện

M N P Q . M ' N ' P ' Q ' là   V = M M '    x   d t M N P Q

= 1 − x x 2   × h    ×   d t A B C D = 3 x 2 − x 3 × V S . A B C D .

Khảo sát hàm số f x = x 2 − x 3 → m ax 0 ; 1 f x = 4 27 .

Dấu “=” xảy ra ⇔ x = 2 3 .

Vậy S M S A = 2 3 thì thể tích khối hộp M N P Q . M ' N ' P ' Q ' lớn nhất.