K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2018

Đáp án D

Trong(ABC), ta có: BG cắt AC tại M

Trong (ABD), ta có: BG’ cắt AD tại N

⇒ (BGG’) ∩ (ACD) = MN

Thiết diện cần tìm là (BMN)

Xét tam giác BMN có:

MN = 1 2 CD = a 2 ( MN là đường trung bình của tam giác ACD)

BM = BN =  a 3 2 (BM, BN lần lượt là đường trung tuyến của tam giác ABC, ABD)

Áp dụng công thức heron:

S = p p - a p - b p - c = a 2 11 6

17 tháng 4 2017

Trong (ABD), BN cắt AD tại F. Trong (ABC), BM cắt AC tại E.

Do M, N lần lượt là trọng tâm của ∆ABC và ∆ABD nên E, F lần lượt là trung điểm của AC, AD

Tứ diện ABCD có cạnh bằng a nên BE = BF = (a√3)/2

Thiết diện là tam giác cân BEF tại B, có đay EF = a/2

Diện tích BEF là

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Đáp án D

8 tháng 8 2017

Gọi I là trung điểm CD thì G 1   ∈   B I ,   G 2   ∈   A I ⇒ mặt phẳng ( B G 1 G 2 ) chính là mặt phẳng (ABI) ⇒ Thiết diện là tam giác cân AIB.

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Đáp án C

9 tháng 4 2019

Gọi M; N  lần lượt là trung điểm của AB và B C  suy ra  AN và MC cắt nhau tại G

Dễ thấy mặt phẳng (GCD)  cắt đường thắng AB  tại điểm M.

Suy ra tam giác MCD  là thiết diện của mặt phẳng  (GCD)  và tứ diện.

Tam giác ABD đều, có M  là trung điểm AB  suy ra

Tam giác A BC đều, có 

Chọn B.

5 tháng 11 2016

đăng nhìu thế