K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2018

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có:\(\left(\dfrac{a+b}{c+d}\right)^3=\left(\dfrac{bk+b}{dk+d}\right)^3=\left(\dfrac{b.\left(k+1\right)}{d.\left(k+1\right)}\right)^3=\dfrac{b^3}{d^3}\)(1)

Lại có :\(\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{b^3k^3+b^3}{d^3k^3+d^3}=\dfrac{b^3.\left(k^3+1\right)}{d^3.\left(k^3+1\right)}=\dfrac{b^3}{d^3}\)(2)

Từ (1) và (2) => ĐPCM

28 tháng 10 2018

Từ a/b=c/d

=>a/c=b/d=a+b/c+d

<=>a^3/c^3=b^3/d^3=(a+b)^3(c+d)^3

=a^3+b^3/c^3+d^3

Vậy

(a+b)^3(c+d)^3=a^3+b^3/c^3+d^3 (đpcm)

31 tháng 10 2017

Cho tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng:

\(\frac{a^3}{c^3}=\frac{\left(2a-b\right)^3+b^3}{\left(2c-d\right)^3+d^3}\)

BÀI LÀM:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

Ta có: \(\frac{\left(2a-b\right)^3+b^3}{\left(2c-d\right)^3+d^3}=\frac{\left(2bk-b\right)^3+b^3}{\left(2dk-d\right)^3+d^3}=\frac{b^3.\left(2k-1\right)^3+b^3}{d^3.\left(2k-1\right)^3+d^3}=\frac{b^3.\left[\left(2k-1\right)^3+1\right]}{d^3.\left[\left(2k-1\right)^3+1\right]}=\frac{b^3}{d^3}\left(1\right)\)

Vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{c^3}{d^3}\left(2\right)\)

Từ (1) và (2) =>  \(\frac{a^3}{c^3}=\frac{\left(2a-b\right)^3+b^3}{\left(2c-d\right)^3+d^3}\left(đpcm\right)\)

Đặt a/b=c/d=k

=>a=bk; c=dk

\(\left(\dfrac{a+b}{c+d}\right)^3=\left(\dfrac{bk+b}{dk+d}\right)^3=\dfrac{b^3}{d^3}\)

\(\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{b^3k^3+b^3}{d^3k^3+d^3}=\dfrac{b^3}{d^3}\)

Do đó: \(\left(\dfrac{a+b}{c+d}\right)^3=\dfrac{a^3+b^3}{c^3+d^3}\)

23 tháng 10 2016

Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^3}{c^3}=\frac{b^3}{d^3}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^3}{c^3}=\frac{b^3}{d^3}=\left(\frac{a+b}{c+d}\right)^3\left(1\right)\)

\(\frac{a^3}{c^3}=\frac{b^3}{d^3}=\frac{a^3+b^3}{c^3+d^3}\left(2\right)\)

Từ (1); (2) \(\Rightarrow\left(\frac{a+b}{c+d}\right)^3=\frac{a^3+b^3}{c^3+d^3}\left(đpcm\right)\)

8 tháng 1 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

\(\left(\frac{a+b}{c+d}\right)^3=\left(\frac{bk+b}{dk+d}\right)^3=\left(\frac{b\left(k+1\right)}{d\left(k+1\right)}\right)^3=\left(\frac{b}{d}\right)^3\left(1\right)\)

\(\frac{a^3+b^3}{c^3+d^3}=\frac{\left(bk\right)^3+b^3}{\left(dk\right)^3+d^3}=\frac{b^3k^3+b^3}{d^3k^3+d^3}=\frac{b^3\left(k^3+1\right)}{d^3\left(k^3+1\right)}=\frac{b^3}{d^3}=\left(\frac{b}{d}\right)^3\left(2\right)\)

Từ (1) & (2)=>\(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3+b^3}{c^3+d^3}\)

1: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(a=b\cdot k;c=d\cdot k\)

\(\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{bk}{b\left(k+1\right)}=\dfrac{k}{k+1}\)

\(\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{dk}{d\left(k+1\right)}=\dfrac{k}{k+1}\)

Do đó: \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

2: \(\dfrac{2a+b}{a-2b}=\dfrac{2\cdot bk+b}{bk-2b}=\dfrac{b\left(2k+1\right)}{b\left(k-2\right)}=\dfrac{2k+1}{k-2}\)

\(\dfrac{2c+d}{c-2d}=\dfrac{2dk+d}{dk-2d}=\dfrac{d\left(2k+1\right)}{d\left(k-2\right)}=\dfrac{2k+1}{k-2}\)

Do đó: \(\dfrac{2a+b}{a-2b}=\dfrac{2c+d}{c-2d}\)

3: \(\dfrac{a+b}{a-b}=\dfrac{bk+b}{bk-b}=\dfrac{b\left(k+1\right)}{b\cdot\left(k-1\right)}=\dfrac{k+1}{k-1}\)

\(\dfrac{c+d}{c-d}=\dfrac{dk+d}{dk-d}=\dfrac{d\left(k+1\right)}{d\left(k-1\right)}=\dfrac{k+1}{k-1}\)

Do đó: \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)

4: \(\dfrac{5a+3b}{5c+3d}=\dfrac{5\cdot bk+3b}{5dk+3d}=\dfrac{b\left(5k+3\right)}{d\left(5k+3\right)}=\dfrac{b}{d}\)

\(\dfrac{5a-3b}{5c-3d}=\dfrac{5\cdot bk-3b}{5\cdot dk-3d}=\dfrac{b\left(5k-3\right)}{d\left(5k-3\right)}=\dfrac{b}{d}\)

Do đó: \(\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)

25 tháng 9 2019

Mỗi tỉ số đã cho bằng \(\frac{a+b+c}{b+c+d}\). Tích của ba tỉ số đã cho bằng \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\).

Mặt khác tích đó cũng bằng : \(\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}=\frac{a}{d}\)

Vậy : ...