K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2017

 

Tập S có tất cả  2 6 = 64 tập con. Mỗi bạn có 64 cách viết ngẫu nhiên. Nên số phần tử không gian mẫu bằng  64 3

Ta tìm số cách viết thoả mãn:

Gọi x, y, z là số phần tử có trong các tập con của A, B, C viết lên bảng.

Vì các tập con của ba bạn này viết khác rỗng nên  x , y , z ≥ 1

Vì các tập con của ba bạn này đôi một không giao nhau và trên bảng có đúng 4 phần tử của S nên x+y+z=4

Vậy ta có hệ 

⇔ ( x ; y ; z ) = 1 ; 1 ; 2 ; 1 ; 2 ; 1 ; 2 ; 1 ; 1

Vậy có tất cả  cách viết thoả mãn.

Xác suất cần tính bằng 

Chọn đáp án B.

 

4 tháng 5 2019

26 tháng 6 2019

4 tháng 7 2018

Đáp án đúng : C

1 tháng 7 2019

11 tháng 4 2018

19 tháng 8 2018

10 tháng 10 2019

Chọn đáp án B

Phương pháp

Chia các TH sau:

TH1: a<b<c.

TH2: a=b<c.

TH3: a<b=c.

TH4: a=b=c.

Cách giải

Gọi số tự nhiên có 3 chữ số là a b c ¯  (0≤a,b,c≤9, a≠0).

=> S có 9.10.10=900 phần tử. Chọn ngẫu nhiên một số từ S => n(Ω)=900

Gọi A là biến cố: “Số được chọn thỏa mãn a≤b≤c”.

TH1: a<b<c. Chọn 3 số trong 9 số từ 1 đến 9, có duy nhất một cách xếp chúng theo thứ tự tăng dần từ trái qua phải nên TH này có C 9 3  số thỏa mãn.

TH2: a=b<c, có  C 9 2  số thỏa mãn.

TH3: a<b=c có  C 9 2  số thỏa mãn.

TH4: a=b=c có 9 số thỏa mãn.

⇒ n ( A ) = C 9 3 + 2 C 9 2 + 9 = 165

Vậy P ( A ) = 11 60 .

1 tháng 1 2020

28 tháng 1 2018