K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét (O) có

\(\widehat{DBE}\) là góc nội tiếp chắn \(\stackrel\frown{DE}\)

Do đó: \(\widehat{DBE}=\dfrac{1}{2}\cdot sđ\stackrel\frown{DE}\)(Định lí góc nội tiếp)

\(\Leftrightarrow\widehat{DBE}=\dfrac{1}{2}\cdot60^0=30^0\)

Xét (O) có

ΔBEC nội tiếp đường tròn(B,E,C∈(O))

BC là đường kính(gt)

Do đó: ΔBEC vuông tại E(Định lí)

⇒BE⊥CE tại E

hay BE⊥AC tại E

Ta có: ΔAEB vuông tại E(BE⊥AC tại E)

nên \(\widehat{EAB}+\widehat{ABE}=90^0\)(hai góc nhọn phụ nhau)

\(\widehat{BAC}=90^0-\widehat{ABE}=90^0-30^0\)

\(\widehat{BAC}=60^0\)

Vậy: \(\widehat{BAC}=60^0\)