K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét (O) có

\(\widehat{DBE}\) là góc nội tiếp chắn \(\stackrel\frown{DE}\)

Do đó: \(\widehat{DBE}=\dfrac{1}{2}\cdot sđ\stackrel\frown{DE}\)(Định lí góc nội tiếp)

\(\Leftrightarrow\widehat{DBE}=\dfrac{1}{2}\cdot60^0=30^0\)

Xét (O) có

ΔBEC nội tiếp đường tròn(B,E,C∈(O))

BC là đường kính(gt)

Do đó: ΔBEC vuông tại E(Định lí)

⇒BE⊥CE tại E

hay BE⊥AC tại E

Ta có: ΔAEB vuông tại E(BE⊥AC tại E)

nên \(\widehat{EAB}+\widehat{ABE}=90^0\)(hai góc nhọn phụ nhau)

\(\widehat{BAC}=90^0-\widehat{ABE}=90^0-30^0\)

\(\widehat{BAC}=60^0\)

Vậy: \(\widehat{BAC}=60^0\)

 

20 tháng 12 2019

Câu hỏi của AFK_VMC MOBLE - Toán lớp 10 - Học toán với OnlineMath

25 tháng 5 2016

a) Ta có BFC = 90* ( góc nội tiếp chắn nửa đường tròn )

=> AB vuông góc CF

BEC = 90* ( góc nội tiếp chắn nửa đường tròn )

=> AC vuông góc BE

Tam giác ABC có BE, CF là đường cao ( AB vuông góc CF tại F và AC vuông góc BE tại E )

Mà BE và CF cắt nhau tại H 

Suy ra H là trực tâm tam giác ABC

=> AH vuông góc BC tại D

                 AH . AD = AE . AC

Xét tam giác AHE và ADC

AEH = ADC = 90*

góc A : góc chung

Vậy tam giác AEH đồng dạng tam giác ADC

=> \(\frac{AE}{AD}\)=\(\frac{AH}{AC}\)

=> AE . AC = AD . AH

b) Gợi ý nhé bạn

Ta chứng minh tứ giác BFHD nội tiếp 

=> DFH = HBD 

Mà HBD = CFE ( cùng chắn CE )

Nên DFH = CFE 

=> FC là phân giác góc EFD 

=> DFE = 2 CFE

Mà EOC = 2 CFE ( góc ở tâm và góc nội tiếp cùng chắn cung CE )

Suy ra DFE = EOC

=> Tứ giác EODF nội tiếp ( góc trong = góc đối ngoài )

c) Tứ giác EODF nội tiếp 

=> EDF = EOF 

Mà EOF = 2 ECF ( góc ở tâm và góc nội tiếp cùng chắn EF )

Nên EDF = 2 ECF

Tam giác DFL cân tại D 

=> EDF = 2 FLD = 2 FLE

Mà EDF = 2 ECF (cmt) 

Nên FLE = ECF 

=> Tứ giác EFCL nội tiếp

Mà tam giác CEF nội tiếp (O)

=> L thuộc (O)

Tam giác BLC nội tiếp (O). Có BC là đường kính 

Suy ra tg BLC vuông tại L

=> BLC = 90*

a: Xét (O) có 

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

Xét ΔABC có 

BE là đường cao

CF là đường cao

BE cắt CF tại H

Do đó: AH⊥BC

hay AF⊥BC

20 tháng 12 2019

Câu hỏi của AFK_VMC MOBLE - Toán lớp 10 - Học toán với OnlineMath

2 tháng 6 2018

bạn tự vẽ hình nha

a)góc BEC=góc BFC=90 (cùng chắn nửa đường tròn)

=>H là trực tâm của tam giác ABC

=>AD vg BC

Ta có tam giác AEH đồng dạng tam giác ADC(góc nhọn)

=>AE/AD=AH/AC

=>AH.AD=AE.AC

b)góc BEC=góc BFC=90 (cùng chắn nửa đường tròn)

=> tứ giác EFBC nội tiếp đường tròn

c)DL=DF

=>D thuộc đường trung trực của LF

=>BC là đường trung trực của LF

hay BLC=BFC=90

3 tháng 6 2018

Cám ơn bạn nhiều nha