K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{BAC}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC(g-g)

Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{EAF}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

15 tháng 4 2021

Nhờ anh có thể bày cho em câu d đc không ạ.

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{BAE}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC

b: Ta có: ΔAEB\(\sim\)ΔAFC

nên AE/AF=AB/AC
hay AE/AB=AF/AC

Xét ΔAEF và ΔABC có 

AE/AB=AF/AC

\(\widehat{EAF}\) chung

DO đó: ΔAEF\(\sim\)ΔABC

18 tháng 3 2020

a, Xét \(\Delta ACF\) và \(\Delta ABE\) có:

\(\widehat{AFC}=\widehat{AEB}=90^0\)

\(\widehat{BAC}\) là góc chung

\(\Rightarrow\Delta ACF~\Delta ABE\left(g.g\right)\)

\(\Rightarrow\frac{AC}{AB}=\frac{AF}{AE}\)

\(\Rightarrow AC.AE=AB.AF\)

Xét \(\Delta AEF\) và \(\Delta ABC\) có:

\(\widehat{CAB}\) là góc chung

\(\frac{AE}{AB}=\frac{AF}{AC}\)

\(\Rightarrow\Delta AEF~\Delta ABC\left(c.g.c\right)\)

b, Xét \(\Delta BDH\) và \(\Delta BEC\) có:

\(\widehat{EBC}\) là góc chung

\(\widehat{BEC}=\widehat{BDH}=90^0\)

\(\Rightarrow\Delta BDH~\Delta BEC\left(g.g\right)\)

\(\Rightarrow\frac{BH}{BC}=\frac{BD}{BE}\)

\(\Rightarrow BE.BH=BC.BD\left(1\right)\)

Tương tự như trên ta được: \(\Delta CDH~\Delta CFB\left(g.g\right)\)

\(\Rightarrow\frac{CH}{CB}=\frac{CD}{CF}\)

\(\Rightarrow CF.CH=CD.CB\left(2\right)\)

Từ (1) và (2) \(\Rightarrow BE.BH+CH.CF=BD.BC+BC.CD=BC\left(BD.CD\right)=BC^2\)

 \(\Rightarrow BH.BE+CH.CF=BC^2\)

19 tháng 3 2020

d,EI _|_ AB ; CE _|_ AB  => EI // CE => AI/IF = AE/EC (đl)

EK _|_ AD; CD _|_ AD => EK // CD => AK/KD = AE/EC (đl)

=> AI/IF = AK/KD; xét tam giac AFD

=> IK // FD (1)

ER _|_ BC; AD _|_ BC => ER // AD => CR/RD = CE/EA (đl)

EQ _|_ CF; AF _|_ CF => AH // AF => CH/FH =  CE/AE (đl)

=> CR/RD = CH/FH; xét tam giác CFD

=> HR // FD       (2)

EK _|_ AD; AD _|_ BD => EK // BD => KH/HD = EH/HB (đl)

EH _|_ CF; CF _|_ BF => EH // FB => EH/HB = QH/HF (đl)

=> KH/HD = QH/HF

=> KH // ED (3)

(1)(2)(3) => I;K;H;R thẳng hàng (tiên đề Ơclit)

Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

\(\widehat{FHB}=\widehat{EHC}\)

Do đó: ΔFHB\(\sim\)ΔEHC

Xét ΔBDH vuông tại D và ΔBEC vuông tại E có

\(\widehat{DBH}\) chung

Do đó: ΔBDH\(\sim\)ΔBEC
Suy ra: BD/BE=BH/BC

hay \(BD\cdot BC=BE\cdot BH\)

Xét ΔCDH vuông tại D và ΔCFB vuông tại F có

\(\widehat{DCH}\) chung

Do đó: ΔCDH~ΔCFB

=>\(\dfrac{CD}{CF}=\dfrac{CH}{CB}\)

=>\(CD\cdot CB=CH\cdot CF\)

\(BH\cdot BE+CH\cdot CF\)

\(=BD\cdot BC+CD\cdot BC=BC\left(BD+CD\right)=BC^2\)

10 tháng 11 2023

1: Xét ΔDCH vuông tại D và ΔDAB vuông tại D có

\(\widehat{DCH}=\widehat{DAB}\)

Do đó:ΔDCH đồng dạng với ΔDAB

=>\(\dfrac{DC}{DA}=\dfrac{DH}{DB}\)

=>\(DC\cdot DB=DA\cdot DH\)

2: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{EAB}\) chung

Do đó: ΔAEB đồng dạng với ΔAFC

=>\(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)

=>\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

\(\widehat{FAE}\) chung

Do đó: ΔAEF đồng dạng với ΔABC

26 tháng 3 2023

a) xét tam giác ABD và tam giác AHF có 

góc BAD chung

Góc AFH = góc ADB (=90 độ)

=> tam giác ABD đồng dạng vs tam giác AHF (g.g)

=> AB/AD = AH/AF

=> AF.AD = AH.AD

b) xét tam giác AFC và tam giác AEB có

Góc A chung

Góc AFC = góc AEB (=90 độ)

=> tam giác AFC đồng vs tam giác AEB (g.g)

=> AF/AC = AE/AB

=> AF.AB= AE.AC

a: Xét ΔABD vuông tại  D và ΔAHF vuông tại F có

góc FAH chung

=>ΔABD đồng dạng với ΔAHF

=>AB/AH=AD/AF

=>AB*AF=AH*AD

b: Xet ΔAEB vuông tại E và ΔAFC vuông tại F có

góc EAB chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE*AC=AB*AF

=>AE/AB=AF/AC
=>ΔAEF đồng dạng với ΔABC

c:góc FEC=góc DAC

góc DFC=góc EBC

mà góc DAC=góc EBC

nên góc FEC=goc DFC

=>FC là phân giác của góc EFD

3 tháng 3 2019

a)cm  tam giác AFC  đồng dạng  tam giác AEB(gg) 

=> tam giác AFE đồng dạng ACB(cgc) . từ đó suy ra đpcm

b) tam giác BDH đồng dạng tam giác BEC (gg) 

=> BH/BC =BD/BE hay BH .BE =BD.BC (1)

                                   t^2 CH.CF=DC.BC (2)

lấy (1)+(2) theo vế suy ra đpcm

c)tam giác AFE đd tam giác ACB ( câu a) => góc AEF = góc C 

t^2 tam giác DEC đd tam giác ABC => góc DEC= góc C

Do đó góc AEF= góc DEC 

mà góc AEF+góc FEB=90 ; góc DEC+BED =90 

 => góc FEB= góc BED 

 suy ra đpcm ................... (x-x)

a: Xét tứ giác BFEC có

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

=>góc BFE+góc BCE=180 độ

=>góc AFE=góc ACB

mà góc FAE chung

nên ΔAFE đồng dạng với ΔACB

b: Xét tứ giác BFHD có

góc BFH+goc BDH=180 độ

=>BFHD là tứ giác nội tiếp

Xét tứ giác CEHD có

góc CEH+góc CDH=180 độ

=>CEHD là tứ giác nội tiếp

góc FDH=góc FBH

góc EDH=góc ACF

mà góc FBH=góc ACF

nên góc FDH=góc EDH

=>DH là phân giác của góc FDE(1)

góc EFH=góc CAD

góc DFH=góc EBC

mà góc CAD=góc EBC

nên góc EFH=góc DFH

=>FH là phân giác của góc EFD(2)

Từ (1), (2) suy ra H là giao của ba đường phân giác của ΔDEF

c: Xét ΔBHD vuông tại D và ΔBCE vuông tại E có

góc HBD chung

=>ΔBHD đồg dạng với ΔBCE

=>BH/BC=BD/BE

=>BH*BE=BC*BD

Xét ΔCDH vuông tại Dvà ΔCFB vuông tại F có

góc FCB chung

=>ΔCDH đồng dạng với ΔCFB

=>CD/CF=CH/CB

=>CD*CB=CH*CF
=>BH*BE+CH*CF=BC^2