K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, Xét tam giác `ADC` và tam giác `MDB` có:

`DB=DC` `(g``t)`

\(\widehat{MDB}=\widehat{ADC}\) (2 góc đối đỉnh)

`DM=DA` `(g``t)`

`=>` Tam giác `ADC=` `MDB` `(c-``g-``c)`

`b,` vì tam giác `ADC=` Tam giác `MDB` (theo a)

`=> AC = BM` (2 cạnh tương ứng)

`=>` \(\widehat{ACD}=\widehat{MBD}\) (2 góc tương ứng)

mà 2 góc này nằm ở vị trí sole trong

`=> AC` //`BM` (d. hiệu nhận biết) (đpcm)

c, Vì Tam giác `ADC=` Tam giác `MDB` (theo a)

`=>`\(\widehat{DAC}=\widehat{DMB}\) (2 góc tương ứng)

Xét Tam giác `ABM` và Tam giác `MCA` có:

AM chung

\(\widehat{DAC}=\widehat{DMB}\) `(CMT)`

`BM = AC (CMT)`

`=>` Tam giác `ABM =` Tam giác `MCA (c-g-c)

d, *xl cậu câu này mình bí mất r:')

loading...

6 tháng 1 2023

cảm ơn nha

7 tháng 1 2024

Xét tam giác ACD và tam giác MBD có:

      AD = DM (gt)

      BD = DC (gt)

   \(\widehat{BDM}\) = \(\widehat{ADC}\) (hai góc đối đỉnh)

⇒ \(\Delta\)ACD = \(\Delta\) MBD  (c-g-c)

Xét tứ giác ABMC có

     AD = DM

      BD = DC

⇒ tứ giác ABMC  là hình bình hành vì tứ giác có hai đường chéo căt nhau tại trung điểm mỗi đường thì tứ giác đó là hình bình hành.

⇒ AC // BM

⇒ \(\widehat{ABM}\) = \(\widehat{MCA}\) (vì tứ giác ABMC là hình bình hành)

 

 

 

   

 

7 tháng 1 2024

 loading...

 xét tam giác ACD và tam giác MBD có 

AD=DM [ gt ]

BD=DC[ gt ]

BDM = ADC hai góc đối đỉnh

suy ra tam giác ACD= tam giác MBD [ c-g-c]

xét tứ giác ABMC có

AD = DM

BD=DC

suy ra tứ giác ABMC là hình bình hành vì tứ giác  có 2 đường chéo cắt nhau tại trung điểm mỗi đường thì tứ giác đó là hình bình hành

suy ra ABM=MCA vì tứ giác ABMC là hình bình hành .

18 tháng 12 2021

a: Xét ΔABD và ΔECD có 

DA=DE

\(\widehat{ADB}=\widehat{EDC}\)

DB=DC

Do đó: ΔABD=ΔECD

18 tháng 12 2021

a: Xét ΔABD và ΔECD có

DA=DE

\(\widehat{ADB}=\widehat{EDC}\)

DB=DC

Do đó: ΔABD=ΔECD

18 tháng 12 2021

?

18 tháng 12 2021

a: Xét ΔABD và ΔECD có 

DA=DE

\(\widehat{ADB}=\widehat{EDC}\)

DB=DC

Do đó: ΔABD=ΔECD

18 tháng 12 2021

câu a,b,c đi

16 tháng 7 2018

15 tháng 12 2016

A B C M D

a) Xét ΔABD và ΔMCD có:

AD=MD(gt)

\(\widehat{ADB}=\widehat{CDM}\left(đđ\right)\)

BD=CD(gt)

=> ΔABD=ΔMCD(c.g.c)

b) Đính chính lại đề: CM AB vuông góc vs CM

VÌ: ΔABD=ΔMCD(cmt)

=> \(\widehat{ABD}=\widehat{MCD}\) . Mà hai góc này ở vị trí sole trong

=>AB//CM

c)Xét ΔBDM và ΔCDA có:

DB=DC(gt)

\(\widehat{BDM}=\widehat{CDA}\left(đđ\right)\)

DM=AD(gt)

=>ΔBDM=ΔCDA(c.g.c)

=>\(\widehat{BMD}=\widehat{CAD}\). Mà hai góc này ở vị trí sole trong

=>AC//BM

16 tháng 12 2016

đọc nhầm đề lm lại từ phần b

b) Vì: ΔABD=ΔMCD(cmt)

=> \(\widehat{ABD}=\widehat{MCD}\) .Mà hai góc này ở vị trid sole trong

=> AB//CM

Mà: \(AB\perp AC\left(gt\right)\)

=> \(AC\perp CM\)

phần c vẫn như ở dưới

Bài 1:Cho góc nhọn xAy, trên tia Ax lấy điểm B, trên tia Ay lấy điểm C sao cho AB = AC. Gọi M là trung điểm của BC và E là trung điểm của AC, trên tia đối của tia EM lấy điểm H sao cho EH = EMa) Chứng minh ( CM ) : tam giác ABM = tam giác ACMb) CM : AM vuông góc BCc) CM : tam giác AEH = tam giác CEMd) Gọi D là trung điểm của AB. Từ B vẽ đường thẳng song song với AM, đường thẳng này cắt tia MD tại K. CM : ba điểm...
Đọc tiếp

Bài 1:

Cho góc nhọn xAy, trên tia Ax lấy điểm B, trên tia Ay lấy điểm C sao cho AB = AC. Gọi M là trung điểm của BC và E là trung điểm của AC, trên tia đối của tia EM lấy điểm H sao cho EH = EM

a) Chứng minh ( CM ) : tam giác ABM = tam giác ACM

b) CM : AM vuông góc BC

c) CM : tam giác AEH = tam giác CEM

d) Gọi D là trung điểm của AB. Từ B vẽ đường thẳng song song với AM, đường thẳng này cắt tia MD tại K. CM : ba điểm H, A, K thẳng hàng

 

Bài 2:

Cho tam giác ABC có góc B < 90 độ. Trên nửa mặt phẳng bờ BC chứa điểm A vẽ tia Bx khác BC, trên tia Bx lấy điểm D sao cho BD = BC. Trên nửa mặt phẳng bờ AB chứa điểm C vẽ tia By vuông góc với BA, trên tia By lấy E sao cho BE = BA

a) CMR : DA = EC

b) DA vuông góc EC

 

Bài 3:

Cho tam giác ABC vuông tại B và AC = 2AB. Kẻ phân giác AE ( E thuộc BC ) của góc A

a) CM : EA = EC

b) Tính góc A và góc C của tam giác ABC

 

GIÚP TỚ VỚI Ạ. TỚ ĐANG CẦN!!

4
6 tháng 1 2018

Bài 1:

K D A H E B M C

a) Xét tam giác ABM và tam giác ACM : AB=AC,AM chung ,BM=MC(vì M là trung điểm của BC gt)

\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)

b) Tam giác ABC có AB=AC nên tam giác ABC cân tại A

=> đường trung tuyến AM đồng thời là đường cao

Vậy AM vuông góc BC

c) Xét tam giác AEH và tam giác CEM : AE=EC,EH=EM,\(\widehat{AEH}=\widehat{CEM}\)(2 góc đối đỉnh)

\(\Rightarrow\Delta AEH=\Delta CEM\left(c.gc\right)\)

d) Ta có KB//AM(vì vuông góc với BM 

\(\Rightarrow\widehat{KBD}=\widehat{DAM}\)(2 góc ở vị trí so le trong)

Xét tam giác KDB và MDA (2 góc đối đỉnh)

\(\Rightarrow\Delta KDB=\Delta DAM\left(g.c.g\right)\)

\(\Rightarrow KD=DM\left(1\right)\)

Tam giác ABM vuông tại M có trung tuyến MD 

Nên : MD=BD=AD(2)

Từ (1) và (2) ta có : KD=DM=DB=AD

Tam giác KAM có trung tuyến ứng với cạnh KM là \(AD=\frac{AM}{2}\)

Nên : Tam giác KAM vuông tại A

Tương tự : Tam giác MAH vuông tại A

Ta có: Qua1 điểm A thuộc AM  có 2 đường KA và AH cùng vuông góc với AM 

Nên : K,A,H thẳng thàng

6 tháng 1 2018

Bài 2 : 

x D A B C E y

a) Ta có tam giác DAB=tam giác CEB(c.g.c)

Do : DA=CB(gt)

       BE=BA(gt)

       \(\widehat{DBA}=\widehat{CBE}\)(Cùng phụ \(\widehat{ABC}\))

=> DA=EC

b) Do tam giác DAB=tam giác CEB(ở câu a) 

=> \(\widehat{BDA}=\widehat{BCE}\Rightarrow\widehat{BDA}+\widehat{BCD}=\widehat{BCE}+\widehat{BCD}\)

Mà : \(\widehat{BDA}+\widehat{BCD}=90^0\)( Do Bx vuông góc BC) 

=> \(\widehat{BCE}+\widehat{BCD}=90^0\)

=> DA vuông góc với EC