K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2020

Bạn tự vẽ hình nha :)

b) Do G và H là trung điểm của NM và MP

=> GH là đường trung bình của tam giác MNP

=> GH // NP và GH = \(\frac{NP}{2}\)

=> GH = \(\frac{4}{2}=2\left(cm\right)\)

Vậy GH = 2 cm

9 tháng 3 2020

Ta có NP2 = 4.4=16

MN2+MP2 = 2,42 + 3,22 = 16

suy ra MN2+MP2=NP2

suy ra tam giác MNP vuông tại M

M N P G H

Vì G là trung điểm của MN, H là trung điểm của MP

suy ra GH = NP : 2 = 2(cm)

Bài 1: 

a) Ta có: MN2+MP2=152+202=625

               NP2=252=625

=> MN2+MP2=NP2

=> \(\Delta MNP\)vuông tại M ( theo định lý Py-ta-go đảo)

=> đpcm

b) Ta có I là trung điểm MP

=> \(IM=IP=\frac{MP}{2}=\frac{20}{2}=10\left(cm\right)\)

Xét \(\Delta MNI\)vuông tại M có:

MN2+MI2=NI2 ( theo định lý Py-ta-go)

= 152+102=325

=> NI= \(\sqrt{325}\approx18\left(cm\right)\)

Bài 2: 

Xét \(\Delta ABD\)vuông tại D có:

\(AD^2+BD^2=AB^2\)(Theo định lý Py-ta-go)

\(\Rightarrow AD^2+15^2=17^2\)

\(\Rightarrow AD^2=17^2-15^2=64=8^2\)

\(\Rightarrow AD=8\left(cm\right)\)

Lại có: AC=AD+DC

=> 17=8+DC

=> DC=9 cm

Xét \(\Delta BDC\)vuông tại D có:

\(BD^2+DC^2=BC^2\)(Theo định lý Py-ta-go)

\(\Rightarrow BC^2=15^2+9^2=306\)

\(\Rightarrow BC=\sqrt{306}\approx17\left(cm\right)\)

Vậy BC\(\approx\)17 cm

18 tháng 6 2020

tự kẻ hình nha

a) xét tam giác BAN và tam giác BAP có

AB chung

BAN=BAP(=90 độ)

NA=AP(gt)

=> tam giác BAN= tam giác BAP(cgc)

=> BNA=BPA(hai góc tương ứng)

=> tam giác BNP cân B=> BN=BP

b) xét tam giác BMN và tam giác BCP có

NB=BP(cmt)

BMN=BCP(=90 độ)

MBN=CBP( đối đỉnh)

=> tam giác BMN= tam giác BCP(ch-gnh)

c) từ tam giác BAN=BAP=> NBA=PBA( hai cạnh tương ứng)

từ tam giác BMN= tam giác BCP=> MB=BC( hai cạnh tương ứng)

xét tam giác BMA và tam giác BCA có

MB=BC(cmt)

MBA=CBA(=CBP+PBA)

AB chung

=> tam giác BMA= tam giác BCA(cgc)

=> MAB=CAB(hai góc tương ứng)

=> AB là p/g của MAC