Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://diendantoanhoc.net/topic/103102-t%C3%ADnh-chu-vi-tam-gi%C3%A1c-def/
a. Gọi G là trung điểm AD
Tam giác ABC đều \(\Rightarrow\widehat{B}=\widehat{C}=60^0\)
\(CD=BC-BD=40\left(cm\right)\)
Trong tam giác vuông BDI:
\(sinB=\dfrac{ID}{BD}\Rightarrow DI=BD.sinB=20.sin60^0=10\sqrt{3}\left(cm\right)\)
\(cosB=\dfrac{IB}{BD}\Rightarrow IB=BD.cosB=20.cos60^0=10\left(cm\right)\)
Trong tam giác vuông CDK:
\(sinC=\dfrac{DK}{CD}\Rightarrow DK=CD.sinC=40.sin60^0=20\sqrt{3}\left(cm\right)\)
\(cosC=\dfrac{KC}{CD}\Rightarrow KC=CD.cosC=40.cos60^0=20\left(cm\right)\)
b. Gọi M là trung điểm BC \(\Rightarrow BM=CM=\dfrac{1}{2}BC=30\left(cm\right)\)
\(DM=BM-BD=10\left(cm\right)\) ; \(AM=\dfrac{AB\sqrt{3}}{2}=30\sqrt{3}\left(cm\right)\)
Áp dụng định lý Pitago cho tam giác vuông ADM:
\(AD=\sqrt{AM^2+DM^2}=20\sqrt{7}\left(cm\right)\)
\(AG=DG=\dfrac{AD}{2}=10\sqrt{7}\left(cm\right)\)
\(AI=AB-BI=50\left(cm\right)\)
Hai tam giác vuông AEG và ADI đồng dạng (chung góc \(\widehat{IAD}\))
\(\Rightarrow\dfrac{AE}{AD}=\dfrac{AG}{AI}\Rightarrow AE=\dfrac{AG.AD}{AI}=28\left(cm\right)\)
Do EG là trung trực AD \(\Rightarrow DE=AE=28\left(cm\right)\)
Tương tự ta có \(AK=AC-CK=40\left(cm\right)\)
Hai tam giác vuông AGF và AKD đồng dạng
\(\Rightarrow\dfrac{AG}{AK}=\dfrac{AF}{AD}\Rightarrow AF=\dfrac{AG.AD}{AK}=35\left(cm\right)\)
\(\Rightarrow DF=AF=35\left(cm\right)\)
\(EF=EG+FG=\sqrt{AE^2-AG^2}+\sqrt{AF^2-AG^2}=7\sqrt{21}\left(cm\right)\)
a) Xét ΔDIB vuông tại I có
\(DI=DB\cdot\sin60^0\)
\(\Leftrightarrow DI=20\cdot\dfrac{\sqrt{3}}{2}=10\sqrt{3}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔDIB vuông tại I, ta được:
\(BD^2=BI^2+ID^2\)
\(\Leftrightarrow BI^2=20^2-\left(10\sqrt{3}\right)^2=100\)
hay BI=10(cm)
Xét ΔBDA có \(cosB=\dfrac{BD^2+BA^2-AD^2}{2\cdot BD\cdot BA}\)
=>\(20^2+60^2-AD^2=2\cdot20\cdot60\cdot cos60=40\cdot60\cdot\dfrac{1}{2}=20\cdot60=1200\)
=>\(AD=\sqrt{20^2+60^2-1200}=20\sqrt{7}\left(cm\right)\)
Xét ΔBAD có \(\dfrac{BD}{sinBAD}=\dfrac{AD}{sinB}\)
=>\(\dfrac{20}{sinBAD}=\dfrac{20\sqrt{7}}{sin60}=\dfrac{40\sqrt{21}}{3}\)
=>\(\dfrac{1}{sinBAD}=\dfrac{2\sqrt{21}}{3}\)
=>\(sinBAD=\dfrac{3}{2\sqrt{21}}\)
=>góc BAD=19 độ
góc AED=180-2*19=142 độ
Xét ΔAED có AD/sinAED=DE/sinEAD
=>\(\dfrac{DE}{\dfrac{3}{2\sqrt{21}}}=\dfrac{20\sqrt{7}}{sin142}\)
=>\(DE\simeq28,13\left(cm\right)\)