K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a:

Sửa đề: Chứng minh ΔCNB~ΔAMC

Ta có: \(\widehat{ICA}+\widehat{ICB}=\widehat{ACB}=90^0\)

\(\widehat{ICB}+\widehat{NCB}=\widehat{ICN}=90^0\)

Do đó: \(\widehat{ICA}=\widehat{NCB}\)

Ta có: \(\widehat{NCB}+\widehat{ACB}+\widehat{MCA}=180^0\)

=>\(\widehat{NCB}+\widehat{MCA}=180^0-90^0=90^0\)

mà \(\widehat{NCB}+\widehat{NBC}=90^0\)(ΔNBC vuông tại N)

nên \(\widehat{NBC}=\widehat{MCA}\)

Xét ΔCNB vuông tại N và ΔAMC vuông tại M có

\(\widehat{CBN}=\widehat{ACM}\)

Do đó: ΔCNB~ΔAMC

b: Xét tứ giác ICNB có \(\widehat{ICN}+\widehat{IBN}=90^0+90^0=180^0\)

nên ICNB là tứ giác nội tiếp

=>\(\widehat{INC}=\widehat{IBC}\)

=>\(\widehat{INC}=\widehat{ABC}\)

Xét ΔCNI và ΔCBA có

\(\widehat{INC}=\widehat{ABC}\)

\(\widehat{NCI}=\widehat{BCA}\left(=90^0\right)\)

Do đó: ΔCNI~ΔCBA

c: Xét tứ giác AMCI có

\(\widehat{MAI}+\widehat{MCI}=90^0+90^0=180^0\)

=>AMCI là tứ giác nội tiếp

=>\(\widehat{MAC}=\widehat{MIC}\)

Vì CIBN là tứ giác nội tiếp

nên \(\widehat{CIN}=\widehat{CBN}\)

Ta có: \(\widehat{MAC}+\widehat{MCA}+\widehat{CBN}+\widehat{NCB}=90^0+90^0=180^0\)

=>\(\widehat{MAC}+\widehat{CBN}+90^0=180^0\)

=>\(\widehat{MAC}+\widehat{CBN}=90^0\)

=>\(\widehat{MIC}+\widehat{NIC}=90^0\)

=>\(\widehat{MIN}=90^0\)