K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
Bảng xếp hạng
Tất cả
Toán
Vật lý
Hóa học
Sinh học
Ngữ văn
Tiếng anh
Lịch sử
Địa lý
Tin học
Công nghệ
Giáo dục công dân
Âm nhạc
Mỹ thuật
Tiếng anh thí điểm
Lịch sử và Địa lý
Thể dục
Khoa học
Tự nhiên và xã hội
Đạo đức
Thủ công
Quốc phòng an ninh
Tiếng việt
Khoa học tự nhiên
- Tuần
- Tháng
- Năm
-
DHĐỗ Hoàn VIP60 GP
-
50 GP
-
41 GP
-
26 GP
-
119 GP
-
VN18 GP
-
14 GP
-
N12 GP
-
LD10 GP
-
10 GP
a:
Sửa đề: Chứng minh ΔCNB~ΔAMC
Ta có: \(\widehat{ICA}+\widehat{ICB}=\widehat{ACB}=90^0\)
\(\widehat{ICB}+\widehat{NCB}=\widehat{ICN}=90^0\)
Do đó: \(\widehat{ICA}=\widehat{NCB}\)
Ta có: \(\widehat{NCB}+\widehat{ACB}+\widehat{MCA}=180^0\)
=>\(\widehat{NCB}+\widehat{MCA}=180^0-90^0=90^0\)
mà \(\widehat{NCB}+\widehat{NBC}=90^0\)(ΔNBC vuông tại N)
nên \(\widehat{NBC}=\widehat{MCA}\)
Xét ΔCNB vuông tại N và ΔAMC vuông tại M có
\(\widehat{CBN}=\widehat{ACM}\)
Do đó: ΔCNB~ΔAMC
b: Xét tứ giác ICNB có \(\widehat{ICN}+\widehat{IBN}=90^0+90^0=180^0\)
nên ICNB là tứ giác nội tiếp
=>\(\widehat{INC}=\widehat{IBC}\)
=>\(\widehat{INC}=\widehat{ABC}\)
Xét ΔCNI và ΔCBA có
\(\widehat{INC}=\widehat{ABC}\)
\(\widehat{NCI}=\widehat{BCA}\left(=90^0\right)\)
Do đó: ΔCNI~ΔCBA
c: Xét tứ giác AMCI có
\(\widehat{MAI}+\widehat{MCI}=90^0+90^0=180^0\)
=>AMCI là tứ giác nội tiếp
=>\(\widehat{MAC}=\widehat{MIC}\)
Vì CIBN là tứ giác nội tiếp
nên \(\widehat{CIN}=\widehat{CBN}\)
Ta có: \(\widehat{MAC}+\widehat{MCA}+\widehat{CBN}+\widehat{NCB}=90^0+90^0=180^0\)
=>\(\widehat{MAC}+\widehat{CBN}+90^0=180^0\)
=>\(\widehat{MAC}+\widehat{CBN}=90^0\)
=>\(\widehat{MIC}+\widehat{NIC}=90^0\)
=>\(\widehat{MIN}=90^0\)