K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2020

a) Xét tam giác ABC và tan giác HBA, ta có: 

\(\widehat{BAC}\)=\(\widehat{BHA}\)\(\left(=90^o\right)\)

\(\widehat{B}\)là góc chung

   => Tam giác ABC ~ tam giác HBA (g-g)

   =>\(\frac{AB}{BH}\)=\(\frac{BC}{BA}\) (tỉ số tương ứng)

Hay \(\frac{AB}{BH}\)=\(\frac{BC}{AB}\)

   <=> AB . AB = BC . BH

   <=> \(AB^2\)= BC . BH

b) Xét tam giác ABC và tam giác HAC, ta có:

\(\widehat{BAC}\)=\(\widehat{AHC}\)\(\left(=90^o\right)\)

\(\widehat{C}\)là góc chung

   => Tam giác ABC ~ tam giác HAC (g-g)

Mà tam giác ABC ~ tam giác HBA (cmt)

   => Tam giác HBA ~ tam giác HAC (tính chất)

  => \(\frac{HB}{HA}\)=\(\frac{HA}{HC}\)(tỉ số tương ứng)

Hay \(\frac{HB}{AH}\)=\(\frac{AH}{HC}\)

   <=> AH . AH = HB . HC

   <=> \(AH^2\)= HB . HC

c) Tam giac ABC vuong tai A co:

\(BC^2\)\(AB^2\)+\(AC^2\)(Pytago)

\(BC^2\)\(6^2\)+\(8^2\)

\(BC^2\)= 100

   <=> BC =\(\sqrt{100}\)(BC > 0)

   <=> BC = 10 (cm)

Mat khac: BC = HB + HC

    Tam giac HAC vuong tai H co:

\(AC^2\)=\(AH^2\)+\(HC^2\)(Pytago)

\(8^2\)= HB . HC + \(HC^2\)

64 = HC (HB + HC)

64 = HC . BC

64 = HC . 10

   => HC = 6,4 (cm)

Ma BC = HB + HC

   => 10 = HB + 6,4

   <=> HB = 3,6 (cm)

   Ta co:

\(AH^2\)= HB . HC (cmt)

   =>\(AH^2\)= 3,6 . 6,4

   <=> \(AH^2\)= 23,04

   <=> AH = \(\sqrt{23,04}\)(AH > 0)

   <=> AH = 4,8 (cm)

22 tháng 4 2018

A B C H 12cm 16cm I D

a)Tính BC:

\(\Delta ABC\)vuông tại A nên:

BC2=AB2+AC2

BC=\(\sqrt{AB^2+AC^2}\)=\(\sqrt[]{12^2+16^2}\)=20 (cm)

b) Xét \(\Delta vuôngABC\)\(\Delta VuôngHBA\)có:

\(\widehat{B}\):chung 

Do đó \(\Delta ABC\)đồng dạng \(\Delta HBA\)(góc nhọn)

Vì \(\Delta ABC\)đồng dạng \(\Delta HBA\)

=>\(\frac{AB}{BH}=\frac{BC}{AB}\)=> AB.AB = BC.BH       =>AB = BC.BH

c) Vì \(\Delta ABC\) đồng dạng \(\Delta HBA\) nên:

\(\frac{BA}{BC}=\frac{BH}{BA}\) (1)

Mặt khác: Do BD là đường phân giác của \(\Delta ABC\)nên:

\(\frac{AD}{DC}=\frac{BA}{BC}\)( T/c đường phân giác trong tam giác)   (2)

Vì BI là đường phân giác của \(\Delta HBA\) nên:

\(\frac{IH}{AI}=\frac{BH}{BA}\)( T/c đường phân giác trong tam giác)   (3)

Từ (1), (2), (3) Suy ra \(\frac{IH}{AI}=\frac{AD}{DC}\) (T/c bắc cầu)

a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABH}\) chung

Do đó: ΔABC\(\sim\)ΔHBA(g-g)

28 tháng 3 2021

😘

11 tháng 4 2022

a.Xét tam giác ABC và tam giác HBA, có:

^A=^H = 90 độ

^B: chung

Vậy tam giác ABC đồng dạng tam giác HBA ( g.g )

\(\Rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\)

\(\Leftrightarrow AB^2=BC.HB\)

b.Áp dụng định lý pitago vào tam giác vuông ABC, có:

\(BC=\sqrt{15^2+20^2}=25cm\)

Ta có:\(AB^2=BC.HB\)

\(\Leftrightarrow15^2=25HB\)

\(\Leftrightarrow HB=9cm\)

\(\Rightarrow HC=25-9=16cm\)

c. Áp dụng t/c đường phân giác góc A, ta có:

\(\dfrac{DC}{AC}=\dfrac{DB}{AB}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\dfrac{DC}{AC}=\dfrac{DB}{AB}=\dfrac{DC+DB}{AC+AB}=\dfrac{25}{35}=\dfrac{5}{7}\)

\(\Rightarrow DB=\dfrac{5}{7}.15=\dfrac{75}{7}cm\)

 

1: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

\(\widehat{ABC}\) chung

Do đó: ΔABC~ΔHBA

2: Sửa đề: \(HA\cdot HB=HC\cdot HD\)

Xét ΔHAC vuông tại H và ΔHDB vuông tại H có

\(\widehat{HAC}=\widehat{HDB}\)(hai góc so le trong, BD//AC)

Do đó: ΔHAC~ΔHDB

=>\(\dfrac{HA}{HD}=\dfrac{HC}{HB}\)

=>\(HA\cdot HB=HD\cdot HC\)

Xét ΔABC vuông tại A và ΔBDA vuông tại B có

\(\widehat{ABC}=\widehat{BDA}\left(=90^0-\widehat{HAB}\right)\)

Do đó: ΔABC~ΔBDA

=>\(\dfrac{AC}{BA}=\dfrac{AB}{BD}\)

=>\(AB^2=AC\cdot BD\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

=>\(AC\cdot BD=BH\cdot BC\)

1: Xét ΔABC vuông tại A và ΔHBA vuông tại H có \(\widehat{B}\) chung

Do đó: ΔABC\(\sim\)ΔHBA

2: Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3.6\left(cm\right)\)

3: Xét ΔBAC có BK là đường phân giác

nên \(\dfrac{AK}{KC}=\dfrac{AB}{BC}\)

mà \(\dfrac{AB}{BC}=\dfrac{BH}{AB}\)

nên \(\dfrac{AK}{KC}=\dfrac{BH}{AB}\left(1\right)\)

Xét ΔAHC vuông tại H và ΔBHA vuông tại H có 

\(\widehat{HAC}=\widehat{HBA}\)

Do đó: ΔAHC\(\sim\)ΔBHA

Suy ra: \(\dfrac{AC}{AB}=\dfrac{AH}{BH}\)

=>BH/AH=AB/AC

hay \(\dfrac{BH}{AB}=\dfrac{AH}{AC}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{AK}{KC}=\dfrac{AH}{AC}\)

hay \(AK\cdot AC=AH\cdot KC\)