Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) đặt giao điểm của AH và DE là I. ta có
vì tứ giác ADHE có 3 góc vuông => tứ giác ADHE là hình chứu nhật
b) áp dụng tính chất đường trung tuyến ứng với nữa cạnh huyền và bằng nữa cạnh huyền trong tam giác vuông
=> DI = BI=IH
áp dụng tính chất .............(ngại viết ^^ ) => EK=KH=KC
mà I là trung điểm của BH , K là trung điểm của HC
=> DI= 1/2 BH
EK = 1/2 HC
=> EK+DI = 1/2BH + 1/2HC= 1/2BC
c) Vì AH vuông góc với BC=> góc AHB = 90độ
mà như câu a) DI=IH
=> góc BHD = góc IDH
=> góc AHD+ IDH=90 độ
nhận thấy ADHE là hình CN => AI=IH=DI=IE
=> tam giác IDH là tam giác cân => góc EDH = góc AHD mà như trên góc AHD+ góc IDH = 90 độ
=> góc EDH+ IDH = 90 độ
=> góc IDE = 90 độ
vì DH//AC => góc IHD= góc KCE = góc KEC
=. góc DIH= góc EKC => EK // DI
mà DIE = 90 độ => DIKE là hình thang vuông
a: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
Suy ra: AH=FE
vẽ hình thì cô thúy bày rồi
chứng minh
a,ta có
HE song song với AC\(\Rightarrow\)AF song song với HE
HFsong song với AB(GT)\(\Rightarrow\)HF song song với AE
\(\Rightarrow\)tứ giác FHEA là hình bình hành
mà \(\widehat{A}\)=90 Độ
\(\Rightarrow\)hình bình hành FHEA là hình chữ nhật
\(\Rightarrow\)EF=AH
mình chỉ biết đến đó thôi
Bạn tự vẽ hình nhé!
a) Xét tứ giác HFAEHFAE có HFAˆ=FAEˆ=AEHˆ=900HFA^=FAE^=AEH^=900 nên HFAEHFAE là hình chữ nhật.
Do đó:
AFEˆ=900−EFHˆ=900−HAEˆ=900−(900−BAHˆ)AFE^=900−EFH^=900−HAE^=900−(900−BAH^)
=BAHˆ=900−Bˆ(1)=BAH^=900−B^(1)
Tam giác ABCABC vuông có MM là trung điểm cạnh huyền nên AM=BC2=BMAM=BC2=BM
⇒△AMB⇒△AMB cân tại MM
⇒Bˆ=MBAˆ=MABˆ(2)⇒B^=MBA^=MAB^(2)
Từ (1);(2)⇒AFEˆ=900−MABˆ(1);(2)⇒AFE^=900−MAB^
⇔AFEˆ+MABˆ=900⇔AFE^+MAB^=900
⇒EF⊥AM⇒EF⊥AM
b) Sửa lại đề: EF∥BDEF∥BD
Tam giác BACBAC có MM là trung điểm BCBC, NN là trung điểm ABAB nên MNMN là đường trung bình của tam giác ABCABC. Do đó MN∥ACMN∥AC. Mà AB⊥AC⇒MN⊥ABAB⊥AC⇒MN⊥AB
Ta thấy tam giác BAMBAM có AH⊥BM,MN⊥BAAH⊥BM,MN⊥BA và AH∩MN=DAH∩MN=D nên DD là trực tâm tam giác BAMBAM
Do đó: BD⊥AMBD⊥AM. Mà EF⊥AM⇒BD∥EF
a: Xét tứ giác AEHF có
góc AEH=góc AFH=góc FAE=90 độ
nên AEHF là hình chữ nhật
=>AH=EF
b: góc IFE=90 độ
=>góc IFH+góc EFH=90 độ
=>góc IFH+góc AHF=90 độ
=>góc IFH=góc IHF
=>IH=IF và góc IFC=góc ICF
=>IH=IC
=>I là trung điểm của HC
Xét ΔHAC có HO/HA=HI/HC
nên OI//AC và OI=AC/2
=>OI//AK và OI=AK
=>AOIK là hình bình hành
a: Xét tứ giác AEHF có
\(\widehat{EAF}=\widehat{AEH}=\widehat{AFH}=90^0\)
Do đó: AEHF là hình chữ nhật
Suy ra: AH=EF