K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2017

mih jup câu a, b

a)Xét tam giác ABC vuông tại A

=>AB+BC=AC (đ/l py-ta-go)

thay \(9^2+BC^2=12^2\)

              \(BC^2=63\)

             \(BC=3\sqrt{7}\)

=> \(BC=3\sqrt{7}\)

b) xét tg BAD và tg BED:

        góc B1 = góc B2(BD_pgiác góc ABC)

        góc A = góc E

        BD chung

=> =nhau trường hợp (ch_gn)

=>DA=DE(2 cạnh tương ứng)

Ta có : DA=DE(cmt)

=> tg ADE cân (t/c)

21 tháng 4 2021

a, xét tam giác abc vuông tại a có

ab^2 + ac^2= bc^2

9^2+12^2=bc^2

144=bc^2

BC=12cm

b,có gì mái mình giải tiếp giờ đi học rồi

9 tháng 8 2018

GT:tam giác ABC; góc A =90 độ 

-BD là tia phân giác của góc  ABC

-DE vuông góc  BC ,E thuộc BC

-AB=9cm , AC=12cm

KL:BC =?;b)Tam giác DAE cân;c)DA<DC

CHỨNG MINH

a)Xét tam giác ABC vuông tại A (gt)

Ta có AB ^2 + AC^2=BC^2(Định lý Py-ta-go)

=>9^2+12^2=BC^2

81^2+144=255

=>BC^2=225=15^2

=>BC=15cm

b)Xét tam giác BAD và tam giác BED có 

Góc BAD = góc BED=90 độ

Góc B1=góc B2(vì BD là tia phân giác của góc ABC)

BA=BE(gt)

=>Tam giác BAD =Tam giác BED (Cạnh huyền-góc nhọn)

=.AD=DE(2 cạnh tương ứng )

=>Tam giác ADE cân tại D (định lý Tam giác cân)

c)Xét tam giác DEC có góc DEC=90 đọ

=>DC là cạnh huyền

=>DC là cạnh lớn nhất 

=>DC>DE [1]

Mà DE=DA(cmt)[2]

Từ 1 và 2 suy ra DC>DA

d)Xét BC có :

BA vuông góc DC=>BA là đường cao của Tam giác BDC

DE vuông góc =>DE là đường cao cảu tam giác BDC

CF vuông góc BD=>CF là đường cao của tam giác BDC

BA,DE,CF là đường cao của tam giác BDC

=>Chúng đồng quy

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED
=>BA=BE

b: BA=BE

DA=DE

=>BD là đường trung trực của AE
c: Xét ΔDAK vuông tại A và ΔDEC vuông tại E có

DA=DE

góc ADK=góc EDC

=>ΔDAK=ΔDEC

=>DK=DC>DA

d: BK=BC

DK=DC

=>BD là trung trực của CK

=>BD vuông góc CK

13 tháng 5 2022

a, Xét Δ ABC vuông tại A, có :

\(BC^2=AB^2+AC^2\) (định lí Py - ta - go)

=> \(BC^2=3^2+4^2\)

=> \(BC^2=25\)

=> BC = 5 (cm)

b, Xét Δ ABD và Δ EBD, có :

\(\widehat{ABD}=\widehat{EBD}\) (BD là tia phân giác \(\widehat{ABE}\))

\(\widehat{BAD}=\widehat{BED}=90^o\)

BD là cạnh chung
=> Δ ABD = Δ EBD (g.c.g)

=> AB = AE

Xét Δ ABE, có :

AB = AE (cmt)

=> Δ ABE cân tại E

Ta có :

Δ ABE cân tại E

BD là tia phân giác của \(\widehat{ABE}\))

=> BD là đường trung trực của AE

13 tháng 5 2022

c, Ta có : Δ ABD = Δ EBD (cmt)

=> AD = ED

Trong Δ CED, cạnh huyền DC là cạnh lớn nhất

=> ED < DC

Mà AD = ED (cmt)

=> AD < DC