K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BC=căn 6^2+8^2=10cm

b: Xét ΔABM vuông tại A và ΔKBM vuông tại K có

BM chung

góc ABM=góc KBM

=>ΔBAM=ΔBKM

c: AM=MK

MK<MC

=>AM<MC

d: Xét ΔMAD vuông tại A và ΔMKC vuông tại K có

MA=MK

góc AMD=góc KMC

=>ΔMAD=ΔMKC

=>AD=KC

Xét ΔBDC có BA/AD=BK/KC

nên AK//DC

11 tháng 3 2022

a) Xét \(\Delta ABC\) vuông tại A:

\(BC^2=AB^2+AC^2\left(Pytago\right).\\ \Rightarrow BC^2=6^2+8^2=36+64=100.\\ \Rightarrow BC=10\left(cm\right).\)

b) Xét \(\Delta ABM\) vuông tại A và \(\Delta KBM\) vuông tại K:

\(BMchung.\)

\(\widehat{ABM}=\widehat{KBM}\) (BM là phân giác góc ABC).

\(\Rightarrow\Delta ABM\) \(=\Delta KBM\left(ch-gn\right).\)

\(\Rightarrow AB=KB.\)

\(\Rightarrow\Delta ABK\) cân tại B.

c) Xét \(\Delta ABK\) cân tại B:

\(\widehat{AKB}=\dfrac{180^o-\widehat{B}}{2}\left(1\right).\)

Xét \(\Delta BDC:\)

DK là đường cao \(\left(DC\perp BC\right).\)

CA là đường cao \(\left(CA\perp AB\right).\)

Mà M là giao điểm của DK và CA.

\(\Rightarrow\) M là trực tâm.

\(\Rightarrow\) BM là đường cao.

Xét \(\Delta DBC:\)

BM là đường cao (cmt).

BM là đường phân giác (gt).

\(\Rightarrow\Delta DBC\) cân tại B.

\(\widehat{DCB}=\dfrac{180^o-\widehat{B}}{2}\left(2\right).\)

Từ (1) (2) \(\Rightarrow\text{​​}\text{​​}\widehat{AKB}=\widehat{DCB}.\)

\(\Rightarrow AK//CD.\)

10 tháng 4 2022

a) Xét ΔABCΔABC vuông tại A:

BC2=AB2+AC2(Pytago).⇒BC2=62+82=36+64=100.⇒BC=10(cm).BC2=AB2+AC2(Pytago).⇒BC2=62+82=36+64=100.⇒BC=10(cm).

b) Xét ΔABMΔABM vuông tại A và ΔKBMΔKBM vuông tại K:

BMchung.BMchung.

ˆABM=ˆKBMABM^=KBM^ (BM là phân giác góc ABC).

⇒ΔABM⇒ΔABM =ΔKBM(ch−gn).=ΔKBM(ch−gn).

⇒AB=KB.⇒AB=KB.

⇒ΔABK⇒ΔABK cân tại B.

c) Xét ΔABKΔABK cân tại B:

ˆAKB=180o−ˆB2(1).AKB^=180o−B^2(1).

Xét ΔBDC:ΔBDC:

DK là đường cao (DC⊥BC).(DC⊥BC).

CA là đường cao (CA⊥AB).(CA⊥AB).

Mà M là giao điểm của DK và CA.

⇒⇒ M là trực tâm.

⇒⇒ BM là đường cao.

Xét ΔDBC:ΔDBC:

BM là đường cao (cmt).

BM là đường phân giác (gt).

⇒ΔDBC⇒ΔDBC cân tại B.

ˆDCB=180o−ˆB2(2).DCB^=180o−B^2(2).

Từ (1) (2) ⇒ˆAKB=ˆDCB.⇒​​​​AKB^=DCB^.

⇒AK//CD.

18 tháng 4 2021

bạn giải đc chưa ??
cho mk xin đ/án vs ạ  :<

a) Xét ΔABD vuông tại A và ΔKBD vuông tại K có 

BD chung

\(\widehat{ABD}=\widehat{KBD}\)(BD là tia phân giác của \(\widehat{ABK}\))

Do đó: ΔABD=ΔKBD(Cạnh huyền-góc nhọn)

10 tháng 5 2021

Ồ mơn ạ

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng

Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF

Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE

Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0

Giải thích các bước giải:

a)Áp dụng định lí pytago vào tam giác ABC vuông tai A ta có:

AB2+AC2=BC2

=>BC2=62+82

=>BC2=100

=>BC=10 (cm)

b)Xét tam giác ABD vuông tại A và tam giác EBD vuông tai E có:

BD : cạnh chung

góc ABD=góc EBD (BD là p/g của góc ABC)

Suy ra: tam giác ABD= tam giác EBD

c)Ta có AC là đường cao thứ nhất của tam giác BFC

FE là đường cao thứ 2 của tam giác BFC

Mà AC và FE cắt nhau tại D nên D là trực tâm

=>BD là đường cao thứ 3 của tam giác BFC

Mà BD cũng là đường p/g của tam giác BFC nên: tam giác BFC cân ở B

Mà góc FBC=60o(gt)

nên: tam giác FBC đều

d mình đang suy nghĩ do khó quá

  • Mirai
23 tháng 3 lúc 12:05k mình nha  undefined
Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC ) a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BACb) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.c) Chứng minh rằng tam giác MDE đềud) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cmBài 2: Cho tam giác ABC vuông tại B,...
Đọc tiếp

Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC )

 a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BAC

b) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.

c) Chứng minh rằng tam giác MDE đều

d) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cm

Bài 2: Cho tam giác ABC vuông tại B, kẻ AI là tia phân giác của góc BAC, IH vuông góc với AC tại H.

a. Chứng minh tam giác ABI = tam giác AHI

b. HI  cắt AB tại K. Chứng tỏ rằng BK=HC

c. Chứng minh rằng BH // KC

d. Qua C kẻ đường thẳng song song với HK, cắt AI tại O. Tìm điều kiện của tam giác ABC để tam giác CIO đều

Bài 3: Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC ( H thuộc BC)

a.  Chứng minh : tam giác AHB= tam giác AHC

b. Gỉa sử AB = AC = 5cm, BC = 8cm. Tính độ dài AH

c. Trân tia đối của tai HA lấy điểm M sao cho HM - HA. chứng minh tam giác ABM cân

d. Chứng minh BM // AC

0
4 tháng 5 2022

db