Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBMD và ΔCMA có
MB=MC
\(\widehat{BMD}=\widehat{CMA}\)
MD=MA
Do đó: ΔBMD=ΔCMA
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AB//CD
c: Xét ΔDAE có
M là trung điểm của DA
MB//AE
Do đó: B là trung điểm của ED
Bài 1:
a/Xét \(\Delta KMD\)và \(\Delta CMA\)có:MD=MA(gt);KM=MC(do M là trung điểm KC);^KMD=^CMA(đối đỉnh)
Do đó:\(\Delta KMD=\Delta CMA\left(c.g.c\right)\)
b/\(\Delta KMD=\Delta CMA\left(c.g.c\right)\Rightarrow\widehat{MKD}=\widehat{MCA}\Rightarrow KD//CA\Rightarrow\widehat{CKD}=\widehat{ACB}=30^0\Rightarrow\widehat{AKD}=90^0+30^0=120^0\)c/Ta có KN//AC(do cùng vuông góc với AB),mà KD//CA nên K;N;D thẳng hàng
a) Xét tam giác AMB và tam giác DMC có:
BM = CM (gt)
AM =DM (gt)
\(\widehat{AMB}=\widehat{DMC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)
b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)
Chúng lại ở vị trí so le trong nên AB //CD.
c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.
Suy ra MA = ME
Lại có MA = MD nên ME = MD.
d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.
Suy ra ED // BC
Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.
Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)
a) Xét tam giác ABM và tam giác DCM có:
BM=MC(M là trung điểm BC)
\(\widehat{BMA}=\widehat{CMD}\)(đối đỉnh)
MA=MD(gt)
=> ΔABM=ΔDCM(c.g.c)
b) Ta có: Tam giác ABC vuông tại A có M là trung điểm cạnh huyền BC
=> \(AM=BM=MC=\dfrac{1}{2}BC\)
=> Tam giác ABM cân tại M
\(\Rightarrow\widehat{ABM}=\widehat{BAM}\)
Mà ΔABM=ΔDCM(cmt)
\(\Rightarrow\widehat{ABM}=\widehat{DCM}=\widehat{BAM}=\widehat{CDM}\)
=> Tam giác DMC cân tại M
=> BD=DC
a: Xét ΔBMD và ΔCMA có
MB=MC
\(\widehat{BMD}=\widehat{CMA}\)
MD=MA
DO đó: ΔBMD=ΔCMA
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AB//CD