K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

Nguyễn Quỳnh Nga làm đc ko mà Spam?

Giải:

Do ABCABC cân nên AB=AC=7+2=9 cm

H là hình chiếu của B lên AC nên BH vuông góc AC

Áp dụng Py - ta - go, ta có: 

\(BC=\sqrt{BH^2+2^2}=6\)

15 tháng 10 2017

à mình nhầm 1 xíu là cân tại A chứ không phải vuông tại A nha mng, vẽ hình dùm t luôn nha

Ta có: AB=AC(ΔABC cân tại A)

nên AB=AH+HC=7+2=9(cm)

Xét ΔAHB vuông tại H có 

\(HB^2+HA^2=AB^2\)

\(\Leftrightarrow BH^2=9^2-7^2=81-49=32\)

hay \(HB=4\sqrt{2}\left(cm\right)\)

Xét ΔBHC vuông tại H có 

\(BC^2=BH^2+CH^2\)

\(\Leftrightarrow BC^2=\left(4\sqrt{2}\right)^2+2^2=36\)

hay BC=6(cm)

22 tháng 7 2017

hình ạn tư vẽ nha 

vì ABC cân nên AB = AC = AH + HC = 9 cm

Xét tam giác ABH : có góc AHB = 90 độ ( vì H là hình chiếu của B trên AC)  

Theo định lí Pi-ta-go ta có \(BH^2+AH^2=AB^2\)

\(\Leftrightarrow BH^2=AB^2-AH^2\)

\(\Leftrightarrow BH^2=9^2-7^2\)

\(\Leftrightarrow BH^2=32\Leftrightarrow BH=4\sqrt{2}\)

Xết tam giác BHC vuông tại H theo Định Lí Pi-ta-go ta có

\(BH^2+HC^2=BC^2\)\(\Leftrightarrow\left(4\sqrt{2}\right)^2+2^2=BC^2\)

\(\Leftrightarrow36=BC^2\)\(\Leftrightarrow BC=6cm\)

21 tháng 6 2016

vì tam giác ABC cân tại A ==> AB=AC=7+2=9 

DÙNG py-ra-go tính được BH=\(4\sqrt{2}\)

Rùi lại py-ta-go TÍNH ĐƯỢC BC=6cm

3 tháng 7 2016

ABC cân tại A => AB = AC = AH + HC = 7 + 2 = 9

HAB vuông tại H có: \(HB^2=AB^2-AH^2=9^2-7^2=32\)

HBC vuông tại H có \(BC^2=HC^2+BH^2=2^2+32=36\)

Vậy cạnh đáy BC = \(\sqrt{36}=6\).

3 tháng 7 2016

Ủa sao dễ nhỉ 

áp dụng d/l py-ta-go trong tam giac vuongo AHC 

=> BC2=AH2+HC2=72+22=53=> BC = Căn 53

23 tháng 10 2021

a, Áp dụng HTL: \(BC=\dfrac{AB^2}{BH}=18\left(cm\right)\)

Áp dụng PTG: \(AC=\sqrt{BC^2-AB^2}=9\sqrt{3}\left(cm\right)\)

Áp dụng HTL: \(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{9\cdot9\sqrt{3}}{18}=\dfrac{9\sqrt{3}}{2}\left(cm\right)\)

b, Áp dụng HTL: \(\left\{{}\begin{matrix}AB\cdot AE=AH^2\\AC\cdot AF=AH^2\end{matrix}\right.\Rightarrow AB\cdot AE=AC\cdot AF\)

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AF}{AE}\)

Mà góc A chung nên \(\Delta AEF\sim\Delta ACB\left(c.g.c\right)\)

Do đó \(\widehat{AEF}=\widehat{ACB}\)