K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2023

a: ΔABC vuông tại A

mà AM là đường trung tuyến

nên \(MA=MC=MB=\dfrac{BC}{2}\)

Xét tứ giác AMCK có

I là trung điểm chung của AC và MK

=>AMCK là hình bình hành

Hình bình hành AMCK có MA=MC

nên AMCK là hình thoi

b: AMCK là hình thoi

=>AK//MC và AK=MC

AK=MC

MB=MC

Do đó: AK=MB

AK//MC

M\(\in\)BC

Do đó: AK//MB

Xét tứ giác ABMK có

AK//BM

AK=BM

Do đó: ABMK là hình bình hành

=>AM cắt BK tại trung điểm của mỗi đường

mà O là trung điểm của AM

nên O là trung điểm của BK

=>B,O,K thẳng hàng

a: Xét ΔABC có

M,I lần lượt là trung điểm của CB,CA

=>MI là đường trung bình

=>MI//AB và MI=AB/2

mà MI=MK/2

nên MK=AB

MI//AB

AB vuông góc AC

=>MI vuông góc AC

Xét tứ giác AMCK có

I là trung điểm chung của AC và MK

=>AMCK là hình bình hành

mà AC vuông góc MK

nên AMCK là hình thoi

b: Xét tứ giác AKMB có

MK//AB

MK=AB

=>AKMB là hình bình hành

3 tháng 1

Đúng ko?

 

22 tháng 11 2023

a: ΔABC vuông tại A

mà AM là đường trung tuyến

nên \(AM=MB=MC=\dfrac{BC}{2}\)

Xét tứ giác AMCK có

I là trung điểm chung của AC và MK

nên AMCK là hình bình hành

Hình bình hành AMCK có MA=MC

nên AMCK là hình thoi

b: AMCK là hình thoi

=>AK//MC và AK=MC

AK//MC

M\(\in\)BC

Do đó: AK//MB

AK=MC

MC=MB

Do đó: AK=MB

Xét tứ giác AKMB có

AK//MB

AK=MB

Do đó: AKMB là hình bình hành

c; Để hình thoi AMCK trở thành hình vuông thì \(\widehat{KCM}=90^0\)

AMCK là hình thoi

=>CA là phân giác của \(\widehat{KCM}\)

=>\(\widehat{ACM}=\dfrac{1}{2}\cdot\widehat{KCM}=45^0\)

=>\(\widehat{ACB}=45^0\)

27 tháng 12 2021

a: Xét tứ giác AMCK có

I là trung điểm của AC

I là trung điểm của MK

Do đó: AMCK là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật

30 tháng 10

Alo

a: Xét ΔABC có

M,I lần lượt là trung điểm của CB,CA

=>MI là đường trung bình của ΔABC

=>MI//AB và MI=AB/2

MI//AB

\(I\in MK\)

Do đó: MK//AB

\(MI=\dfrac{AB}{2}\)

\(MI=\dfrac{MK}{2}\)

Do đó: AB=MK

Xét tứ giác ABMK có

MK//AB

MK=AB

Do đó: ABMK là hình bình hành

b: Để hình bình hành AKMB là hình thoi thì MB=BA

ΔABC vuông tại A có AM là đường trung tuyến

nên \(AM=MB=MC=\dfrac{BC}{2}\)

=>AM=MB=BA

=>ΔMAB đều

=>\(\widehat{ABC}=60^0\)

26 tháng 12 2021

a: Xét tứ giác AMCK có

I là trung điểm của AC

I là trung điểm của MK

Do đó: AMCK là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật

a: Xét tứ giác AMCK có 

I là trung điểm của AC

I là trung điểm của MK

Do đó: AMCK là hình bình hành

a: Xét tứ giác AMCK có

I là trung điểm chung của AC và MK

góc AMC=90 độ

=>AMCK là hình chữ nhật

b: Xet tứ giác ABMK có

AK//MB

AK=MB

=>ABMK là hình bình hành

c; Xét tứ giác ABEC có

M là trung điểm chung của AE và BC

AB=AC

=>ABEC là hình thoi

16 tháng 10 2016

Hình học lớp 8

a) Tam giác ABC cân tại A có AM là đường trung tuyến

=> AM cũng là đường cao

=> AM⊥BC

Tứ giác AMCK có : I là trung điểm của đường chéo MK

                              I là trung điểm của đường chéo AC

=> AMCK là hình bình hành

mà góc AMC bằng 90 độ

=> AMCK là hình chữ nhật

b) Ta có: AK =MC ( 2 cạnh đối trong hình chữ nhật)

mà MC=MB ( M là trung điểm của BC)

=> AK=MB

Ta có: AK//MC( 2 cạnh đối trong hình chữ nhật)

mà MC và MB là 2 tia đối

=> AK//MB

Tứ giác AKBM có: AK=MB

                                AK//MB

=> AKBM là hình bình hành

c) Tứ giác ABEC có: M là trung điểm của đường chéo AE

                                    M là trung điểm của đường chéo BC

=> ABEC là hình bình hành

mà AE⊥BC( cmt)

=> ABEC là hình thoi

                                   

                             

a: Xet tứ giác MPNQ có

I là trung điểm chung của MN và PQ

nên MPNQ là hình bình hành

b:M đối xứng K qua PQ

nên MK vuông góc với PQ tại trung điểm của MK

=>H là trung điểm của MK

Xét ΔMKN có MH/MK=MI/MN

nên HI//KN

=>KN vuông góc với KM

c: M đối xứng K qua PQ

nên QM=QK

=>QK=PN

Xét tứ giác PQNK có

PQ//NK

PN=QK

Do đó: PQNK là hình thang cân