K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b) Ta có: KI\(\perp\)BC(gt)

AH\(\perp\)BC(gt)

Do đó: KI//AH(Định lí 1 từ vuông góc tới song song)

Suy ra: \(\widehat{HAI}=\widehat{KIA}\)(hai góc so le trong)(1)

Ta có: ΔABK=ΔIBK(cmt)

nên KA=KI(hai cạnh tương ứng)

Xét ΔKAI có KA=KI(cmt)

nên ΔKAI cân tại K(Định nghĩa tam giác cân)

Suy ra: \(\widehat{KAI}=\widehat{KIA}\)(hai góc ở đáy)(2)

Từ (1) và (2) suy ra \(\widehat{HAI}=\widehat{KAI}\)

\(\Leftrightarrow\widehat{HAI}=\widehat{CAI}\)

Suy ra: AI là tia phân giác của \(\widehat{HAC}\)(Đpcm)

a) Xét ΔABK vuông tại A và ΔIBK vuông tại I có 

BK chung

\(\widehat{ABK}=\widehat{IBK}\)(BK là tia phân giác của \(\widehat{ABI}\))

Do đó: ΔABK=ΔIBK(Cạnh huyền-góc nhọn)

7 tháng 8 2021

giúp mình ạ  mình con 20p thôi ạ

 

bn tham khảo tại đây;

https://olm.vn/hoi-dap/detail/256733768368.html

9 tháng 3 2022

Có gì khong hiểu hỏi lại cj nhé:

undefined

undefinedundefined

a, b ,c lần lượt từ trên xuống.

9 tháng 3 2022

Chị tâm lí qué=)

a: Xét ΔABK và ΔIBK có

BA=BI

\(\widehat{ABK}=\widehat{IBK}\)

BK chung

Do đó: ΔABK=ΔIBK

Suy ra: \(\widehat{BAK}=\widehat{BIK}=90^0\)

hay KI⊥BC

b: Ta có: \(\widehat{HAI}+\widehat{BIA}=90^0\)

\(\widehat{CAI}+\widehat{BAI}=90^0\)

mà \(\widehat{BIA}=\widehat{BAI}\)

nên \(\widehat{HAI}=\widehat{CAI}\)

hay AI là tia phân giác của góc HAC

a: ΔBCA cân tạiA

mà AH là đường cao

nên AH là phân giác

b: Xet ΔBMI vuông tại M và ΔBHI vuông tại H có

BI chung

góc MBI=góc HBI

=>ΔBMI=ΔBHI

=>IM=IH

Xét ΔIMA vuông tại M và ΔINA vuông tại N có

AI chung

góc MAI=góc NAI

=>ΔIMA=ΔINA

=>IM=IN=IH

c: Xet ΔIMA vuông tại M và ΔINA vuông tại N có

AI chung

góc MAI=góc NAI

=>ΔIMA=ΔINA

=>góc MIA=góc NIA

=>IA là phân giác của góc MIN

28 tháng 1 2022

Bạn tự vẽ hình.

a, Sử dụng định lí pitago tính được \(BC=5cm\)

b, Dễ dàng chứng minh \(\Delta ABK=\Delta IBK\left(c.g.c\right)\)

=> \(\widehat{BIK}=\widehat{BAK}=90^o\)

=> \(KI\perp BC\)

c, Ta có: \(\hept{\begin{cases}AH\perp BC\\KI\perp BC\end{cases}}\) 

=> AH // KI 

=> \(\widehat{HAI}=\widehat{KIA}\) (1)

Mà AK = KI (do \(\Delta ABK=\Delta IBK\))

=> \(\Delta AKI\) cân tại K

=> \(\widehat{KAI}=\widehat{KIA}\) (2)

Từ (1) và (2) => \(\widehat{HAI}=\widehat{KAI}\)

=> AI là tia phân giác \(\widehat{HAC}\)

d, \(\Delta AEK\) có AI là phân giác => \(\Delta AEK\) cân tại A 

28 tháng 1 2022

ko cần tim đâu, k là đc

28 tháng 1 2022

ukkkkk

31 tháng 1 2019

a, xét tam giác ABM và tam giác KBM có: AB=BK, BM chung, góc ABM= góc KBM

suy ra 2 tam giác trên bằng nhau

hok tốt

1 tháng 2 2019

tu ve hinh : 

xet tamgiac ABM va tamgiac KBM co :  MB chung

goc ABM = goc MBK do BM la phan giac cua goc ABC (gt)

AB = AK (gt)

=> tammgiac ABM = tamgiac KBM (c - g - c)