Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài của bn bị thiếu à?
Cho tam giác ABC vuông tai A (AB ?
Bn tự vẽ hình nha
a, Xét tứ giác HMKA có
góc MHA= 90 độ( mh ⊥ AB-gt)
góc MKA = 90 độ( MK⊥ AC - gt)
góc HAK = 90 độ( tam giác ABC ⊥ A-gt)
-> HMKA là hình chữ nhật ( tứ giác có 3 góc vuông)
-> HM song song AK; Hk=MA; HA=MK
ta có
HM song song ak(cmt)
M là trung điểm BC(gt)
-> H là trung điểm BA
-> Bh=HA=1/2 BA
mà HA=MK(cmt)
->BH=MK(1)
Xét tam giác ABC vuông tại A có
AM là đg trung tuyến(gt)
-> AM=MB=MC
mà MA=HK(cmt)
-> HK=BM(2)
Từ (1) và (2)
-> BMKH là hình bình hành( các cạnh đối bằng nhau là hình bình hành)
Sorry nhe mình ko bít lm câu C
Nếu hai câu trên đúng like cho mình nha >_<
a: Xét tứ giác ANMP có
\(\widehat{ANM}=\widehat{APM}=\widehat{NAP}=90^0\)
=>ANMP là hình chữ nhật
c: Xét ΔABC có
M là trung điểm của BC
MN//AC
Do đó: N là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
MP//AB
Do đó: P là trung điểm của AC
Xét ΔABC có
N,P lần lượt là trung điểm của AB,AC
=>NP là đường trung bình của ΔABC
=>NP//BC và NP=BC/2
=>NP//MH
Ta có: ΔHAC vuông tại H
mà HP là đường trung tuyến
nên HP=AP
mà AP=MN(ANMP là hình chữ nhật)
nên HP=MN
Xét tứ giác MHNP có MH//NP
nên MHNP là hình thang
Hình thang MHNP có MN=HP
nên MHNP là hình thang cân
a: ΔABC vuông tại A
mà AM là trung tuyến
nên AM=MB=MC
=>góc MBA=góc MAB
b: góc AEF=90 độ-góc EAM=90 độ-góc B
=>gócAEF=góc ACB
c: Xét ΔAFE vuông tại A và ΔABC vuông tại A có
góc AEF=góc ACB
=>ΔAFE đồng dạng với ΔABC
=>AF/AB=AE/AC
=>AF*AC=AB*AE
a/ Xét tg vuông ABC có
BM=CM (gt) => AM=BM=CM=BC/2 (trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền)
=> tg ABM cân tại M => \(\widehat{BAM}=\widehat{ABM}\) (góc ở đáy tg cân)
b/ Xét tg vuông AEF và tg vuông AFM có
\(\widehat{AEF}=\widehat{FAM}\) (cùng phụ với \(\widehat{AFE}\) ) (1)
Mà AM=CM (cmt) => tg MAC cân tại M => \(\widehat{FAM}=\widehat{ACB}\) (góc ở đáy th cân) (2)
Từ (1) và (2) \(\Rightarrow\widehat{ACB}=\widehat{AEF}\)
Xét tg MBE và tg MFC có
\(\widehat{AEF}=\widehat{ACB}\) (cmt)
\(\widehat{BME}=\widehat{CMF}\) (góc đối đỉnh)
=> tg MBE đồng dạng với tg MFC (g.g.g)
c/ Xét tg vuông ABC và tg vuông AFE có
\(\widehat{AEF}=\widehat{ACB}\) (cmt)
=> tg ABC đông dạng với tg AFE
\(\Rightarrow\dfrac{AB}{AF}=\dfrac{AC}{AE}\Rightarrow AB.AE=AC.AF\)
d/
Điểm F ở đâu vậy bạn?