Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
=>AMHN là hình chữ nhật
b: AMHN là hình chữ nhật
=>AM//HN và AM=HN
AM=HN
HN=NE
Do đó: AM=NE
AM//HN
\(N\in HE\)
Do đó: AM//NE
Xét tứ giác AMNE có
AM//NE
AM=NE
Do đó: AMNE là hình bình hành
Bài 12:
:v Mình sửa P là trung điểm của EG
A B C D E O Q N F G M I 1 2 P
a) Ta có: \(\widehat{EAC}=\widehat{EAB}+\widehat{BAC}=90^0+\widehat{BAC}\)
\(\widehat{GAB}=\widehat{GAC}+\widehat{BAC}=90^0+\widehat{BAC}\)
\(\Rightarrow\widehat{EAC}=\widehat{GAB}\)
Xét tam giác EAC và tam giác BAG có:
\(\hept{\begin{cases}EA=AB\\\widehat{EAC}=\widehat{GAB}\left(cmt\right)\\AG=AC\end{cases}}\Rightarrow\Delta EAC=\Delta BAG\left(c-g-c\right)\)
\(\Rightarrow CE=BG\)( 2 cạnh t. ứng )
+) Gọi O là giao điểm của EC và BG, Gọi I là giao điểm của AC và BG
Vì \(\Delta EAC=\Delta BAG\left(cmt\right)\)
\(\Rightarrow\widehat{ACE}=\widehat{AGB}\)
Vì tam giác AIG vuông tại A nên \(\widehat{I1}+\widehat{AGB}=90^0\)(2 góc phụ nhau )
Mà \(\widehat{ACE}=\widehat{AGB}\left(cmt\right),\widehat{I1}=\widehat{I2}\)( 2 góc đối đỉnh )
\(\Rightarrow\widehat{I2}+\widehat{ACE}=90^0\)
Xét tam giác OIC có \(\widehat{I2}+\widehat{ACE}+\widehat{IOC}=180^0\left(dl\right)\)
\(\Rightarrow\widehat{IOC}=90^0\)
\(\Rightarrow BG\perp EC\)
b) Vì ABDE là hình vuông (gt)
\(\Rightarrow EB\)cắt AD tại Q là trung điểm của mỗi đường (tc)
Xét tam giác EBC có Q là trung điểm của EB (cmt) , M là trung điểm của BC (gt)
\(\Rightarrow QM\)là đường trung bình của tam giác EBC
\(\Rightarrow QM=\frac{1}{2}EC\left(tc\right)\)
CMTT: \(PN=\frac{1}{2}EC;QP=\frac{1}{2}BG,MN=\frac{1}{2}BG\)
Mà EC=BG (cm câu a )
\(\Rightarrow QM=MN=NP=PQ\)
Xét tứ giác MNPQ có \(QM=MN=NP=PQ\left(cmt\right)\)
\(\Rightarrow MNPQ\)là hình thoi ( dhnb ) (1)
CM: MN//BG , QM//EC ( dựa vào đường trung bình tam giác )
Mà \(BG\perp EC\left(cmt\right)\)
\(\Rightarrow MN\perp MQ\)
\(\Rightarrow\widehat{QMN}=90^0\)(2)
Từ (1) và (2) \(\Rightarrow MNPQ\) là hình vuông ( dhnb )
\(\)
Bài 11:
A B C H D P E Q
a) Ta có: \(\widehat{HAD}+\widehat{HAE}=90^0+90^0=180^0\)
\(\Rightarrow\widehat{DAE}=180^0\)
\(\Rightarrow D,A,E\)thẳng hàng
b) Vì AHBD là hình chữ nhật (gt)
\(\Rightarrow AB\)cắt DH tại trung điểm mỗi đường (tc) và AB=DH(tc)
Mà P là trung điểm của AB (gt)
\(\Rightarrow P\)là trung điểm của DH (1)
\(\Rightarrow PH=\frac{1}{2}DH,PA=\frac{1}{2}AB\)kết hợp với AB=DH (cmt)
\(\Rightarrow PH=PA\)
\(\Rightarrow P\in\)đường trung trục của AH
CMTT Q thuộc đường trung trực của AH
\(\Rightarrow PQ\)là đường trung trực của AH
c) Từ (1) => P thuộc DH
=> D,P,H thẳng hàng
d) Vì ABCD là hình chữ nhật (gt)
=> DH là đường phân giác của góc BHA (tc) mà góc BHA= 90 độ
=> góc DHA= 45 độ
CMTT AHE =45 độ
=> góc DHA+ góc AHE=90 độ
Hay góc DHE=90 độ
=> DH vuông góc với HE
A B C H D E M N I
a) Tứ giác AEHD có 3 góc vuông nên góc còn lại cũng vuông \(\Rightarrow\) tứ giác AEHD là hình chữ nhật.
b)Ta cần chứng minh NA = AM và A, M, N thẳng hàng
Do tứ giác AEHD là hình chữ nhật nên AD // EH \(\Rightarrow\)AD//NE (1)
Mặt khác DE là đường trung bình nên DE // NM \(\Rightarrow\)DE //NA(2)
Từ (1) và (2) suy ra tứ giác EDAN là hình bình hành \(\Rightarrow\) ED = AN (*)
Tương tự ED = AM (**) .Từ (*) và (**) suy ra AM = AN (***)
Dễ chứng minh \(\Delta\)MAD = \(\Delta\)HAD \(\Rightarrow\)^MAD = ^HAD (4)
Tương tự: ^NAE = ^HAE (5) . Cộng theo vế (4) và (5) suy ra ^MAD + ^NAE = 90o (6)
Từ (6) suy ra ^MAD + ^NAE + ^EAD = 90o + ^EAD = 180o \(\Rightarrow\)N, A, E thẳng hàng (****)
Từ (***) và (****) suy ra đpcm.
c)\(\Delta\)ABC vuông tại A có AI là trung tuyến nên \(AI=\frac{1}{2}BC=CI\)\(\Rightarrow\)\(\Delta\)ACI cân tại I
\(\Rightarrow\)^IAC = ^ICA (7)
Mặt khác ta dễ dàng chứng minh \(\Delta\)CNA = \(\Delta\)CHA (tự chứng minh đi nhé!)
Suy ra ^NCA = ^HCA \(\Rightarrow\)^NCA = ^ICA (8) (vì H, I cùng thuộc B nên ta có H, I, C thẳng hàng do đó ^HCA = ^ICA)
Từ (7) và (8) ta có ^IAC = ^NCA. Mà hai góc này ở vị trí so le trong nên ta có đpcm.
P/s: Không chắc nha!
a: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
=>AMHN là hình chữ nhật
b: Ta có: AMHN là hình chữ nhật
=>AM//HN và AM=HN
Ta có: AM//HN
N\(\in\)HK
Do đó: AM//KN
Ta có: AM=HN
HN=KN
Do đó: AM=KN
Xét tứ giác AMNK có
AM//NK
AM=NK
Do đó: AMNK là hình bình hành
A B M N C H D E
a/
\(HM\perp AB;AC\perp AB\Rightarrow AN\perp AB\) => HM//AN
\(HN\perp AC;AB\perp AC\Rightarrow AM\perp AC\) => HN//AM
=> AMHN là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
Ta có \(\widehat{A}=90^o\) (gt)
=> AMHN là HCN (hình bình hành có 1 góc trong bằng 90o là HCN)
b/ Nối A với D và A với E
Xét tg vuông AMD và tg vuông AMH có
MD=MH; AM chung => tg AMD = tg AMH (hai tg vuông có hai cạnh góc vuông tương ứng bằng nhau)
\(\Rightarrow\widehat{MAD}=\widehat{MAH}\)
Tương tự khi xét tg vuông ANH và tg vuông ANE
=> tg ANH = tg ANE \(\Rightarrow\widehat{NAH}=\widehat{NAE}\)
\(\Rightarrow\widehat{MAD}+\widehat{NAE}=\widehat{MAH}+\widehat{NAH}=\widehat{A}=90^o\)
\(\Rightarrow\widehat{MAD}+\widehat{NAE}+\widehat{A}=\widehat{DAE}=90^o+90^o=180^o\)
=> D; A; E thẳng hàng
c/
Xét tg vuông MBD và tg vuông MBH có
MD=MH (gt)
MB chung
=> tg MBD = tg MBH (hai tg vuông có hai cạnh góc vuông tương ứng bằng nhau) => BD=BH
Xét tg ADB và tg AHB có
tg AMD = tg AMH (cmt) => AD=AH
AB chung
BD=BH (cmt)
=> tg ADB = tg AHB \(\Rightarrow\widehat{ADB}=\widehat{AHB}=90^o\Rightarrow BD\perp DE\)
C/m tương tự ta cũng có \(CE\perp DE\)
=> BD//CE (cùng vuông góc với DE)
=> BDEC là hình thang
d/
Ta có
tg AMD = tg AMH (cmt) => AD=AH
c/m tương tự có
tg AHN = tg ANE => AE=AH
=> AD=AE
Xét tg vuông DHE có
AD=AE (cmt)
\(AH=AD=AE=\dfrac{DE}{2}\) (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)
Ta có
MD=MH; NE=NH => MN là đường trung bình của tg DHE
\(\Rightarrow MN=\dfrac{DE}{2}\)
\(\Rightarrow MN+AH=\dfrac{DE}{2}+\dfrac{DE}{2}=DE\)