Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AB/AC=4/3
=>HB/HC=16/9
=>HB/16=HC/9=k
=>HB=16k; HC=9k
AH^2=HB*HC
=>144k^2=24^2=576
=>k=2
=>HB=32cm; HC=18cm
AB=căn 32*50=40cm
AC=căn 18*50=30cm
Lời giải:
Áp dụng hệ thức lượng trong tam giác vuông:
$AB^2=BH.BC$
$AC^2=CH.CB$
$\Rightarrow \frac{9}{16}=\frac{BH}{CH}=(\frac{AB}{AC})^2$
$\Rightarrow \frac{AB}{AC}=\frac{3}{4}$
$AC=\frac{4}{3}AB=\frac{4}{3}.24=32$ (cm)
$BC=\sqrt{AB^2+AC^2}=\sqrt{24^2+32^2}=40$ (cm)
$AH=\frac{AB.AC}{BC}=\frac{24.32}{40}=19,2$ (cm)
Ta có: \(\dfrac{HB}{HC}=\dfrac{9}{16}\Rightarrow HB=\dfrac{9}{16}HC\)
Ta có: \(AB^2=BH.BC=BH\left(BH+HC\right)=\dfrac{9}{16}HC\left(\dfrac{9}{16}HC+HC\right)\)
\(=\dfrac{9}{16}HC.\dfrac{25}{16}HC=\dfrac{225}{256}HC^2\)
\(\Rightarrow HC^2=\dfrac{256AB^2}{225}=\dfrac{16384}{25}\Rightarrow HC=\dfrac{128}{5}\left(cm\right)\)
\(\Rightarrow HB=\dfrac{72}{5}\Rightarrow BC=\dfrac{128+72}{5}=40\left(cm\right)\)
\(\Rightarrow AC=\sqrt{BC ^2-AB^2}=\sqrt{40^2-24^2}=32\)
Ta có: \(AB.AC=AH.BC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{24.32}{40}=\dfrac{96}{5}\left(cm\right)\)
\(\dfrac{HB}{HC}=\dfrac{9}{16}\Rightarrow HC=\dfrac{16}{9}HB\)
Áp dụng hệ thức lượng:
\(AB^2=HB.BC=HB\left(HB+HC\right)\)
\(\Leftrightarrow24^2=HB.\left(HB+\dfrac{16}{9}HB\right)\)
\(\Rightarrow HB^2=\dfrac{5184}{25}\Rightarrow HB=\dfrac{72}{5}\left(cm\right)\)
\(HC=\dfrac{16}{9}HB=\dfrac{128}{5}\) (cm)
\(BC=HB+HC=40\) (cm)
\(AC=\sqrt{BC^2-AB^2}=32\) (cm)
\(AH=\dfrac{AB.AC}{BC}=\dfrac{96}{5}\left(cm\right)\)
c: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
Bài 5:
a) Xét ΔABC vuông tại A có
\(AC=AB\cdot\cot\widehat{C}\)
\(=21\cdot\cot40^0\)
\(\simeq25,03\left(cm\right)\)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=21^2+25,03^2=1067,5009\)
hay \(BC\simeq32,67\left(cm\right)\)
a, \(\cos B=\cos60^0=\dfrac{AC}{BC}=\dfrac{1}{2}\Leftrightarrow AC=10\left(cm\right)\)
\(AB=\sqrt{BC^2-AC^2}=10\sqrt{3}\left(cm\right)\left(pytago\right)\)
\(b,\) Sửa: Tính AH,BH,CH
Áp dụng HTL: \(\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=15\left(cm\right)\\CH=\dfrac{AC^2}{BC}=5\left(cm\right)\end{matrix}\right.\); \(AH=\dfrac{AB\cdot AC}{BC}=5\sqrt{3}\left(cm\right)\)
a,theo định lý pytago đảo tính dc A=90
các góc còn lại tính bằng máy tính nha bạn.bạn lấy máy tính bấm \(sin^{-1}\)(cạnh đối/cạnh huyền) là ra góc cần tính nha bạn
b,ah vuông góc bc mà tam giác abc vuông tại a nên
\(AB^2=BH.BC\Rightarrow100=BH.26\Rightarrow BH=\dfrac{50}{13}\)
\(\Rightarrow CH=BC-BH=\dfrac{288}{13}\)
\(\Rightarrow AH^2=BH.CH=\dfrac{14400}{169}\Rightarrow AH=\dfrac{120}{13}\)
tick mik nha bn
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AH^2=HB\cdot HC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=40cm\\AC=8\sqrt{89}cm\end{matrix}\right.\)
Xét ΔACH vuông tại H có
\(\sin\widehat{C}=\dfrac{AH}{AC}=\dfrac{5}{\sqrt{89}}\)
\(\Leftrightarrow\widehat{C}\simeq32^0\)
hay \(\widehat{B}=58^0\)
a ) Ta có : \(AH^2=BH.HC\)
\(\Rightarrow HC=\frac{AH^2}{BH}=\frac{24^2}{16}=36\left(cm\right)\)
Ta có : \(BC=BH+HC=16+36=52\left(cm\right)\)
\(\Rightarrow AB^2=BC.BH\)
\(AB^2=52.16\)
\(AB=\sqrt{52.16}\)
\(AB=\sqrt{52}.4\)
\(AB=28,8\left(cm\right)\)
\(\Rightarrow AC^2=BC.HC\)
\(AC^2=52.36\)
\(AC=\sqrt{52.36}\)
\(AC=\sqrt{52}.6\)
\(AC=43,3\left(cm\right)\)
b ) Ta có : \(sin\) \(B=\frac{AC}{BC}=\frac{43,3}{52}=0,83\)
\(\Rightarrow\widehat{B}=56^0\)
\(\Rightarrow\widehat{C}=\widehat{A}-\widehat{B}=90^0-56^0=34^0\).