Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔAHD vuông tại H có
AH chung
HB=HD
Do đó: ΔAHB=ΔAHD
b: ΔAHB=ΔAHD
=>AB=AD
Xét ΔABD có AB=AD và góc B=60 độ
nên ΔABD đều
c: Xét ΔDAC có góc DAC=góc DCA=30 độ
nên ΔDAC cân tại D
=>DA=DC
Xét ΔDHA vuông tại H và ΔDEC vuông tại E có
DA=DC
góc ADH=góc CDE
Do đó; ΔDHA=ΔDEC
=>DE=DH=HB
d: Xét ΔCIA có
AE,CH là đường cao
AE cắt CH tại D
Do đó: D là trực tâm
=>ID vuông góc AC
mà DF vuông góc AC
nên I,D,F thẳng hàng
a)
Xét ΔAHB vuông tại H và ΔAHD vuông tại H có
AH chung
HB=HD
Do đó: ΔAHB=ΔAHD
b)
ΔAHB=ΔAHD
=>AB=AD
Xét ΔABD có AB=AD và góc B=60 độ
nên ΔABD đều
c)
Xét ΔDAC có góc DAC=góc DCA=30 độ
nên ΔDAC cân tại D
=>DA=DC
Xét ΔDHA vuông tại H và ΔDEC vuông tại E có
DA=DC
góc ADH=góc CDE
Do đó; ΔDHA=ΔDEC
=>DE=DH=HB
d)
Xét ΔCIA có
AE,CH là đường cao
AE cắt CH tại D
Do đó: D là trực tâm
=>ID vuông góc AC
mà DF vuông góc AC
nên I,D,F thẳng hàng
a,Xét \(\Delta\)AHB và AHD có:AH chung
BH=HD(gt)
AHB=AHD=90
vậy tam giác AHB= tam giác AHC
b,Tam giác ABD đều ms đúng chứ ạ bạn xem lại đề nha
Theo câu a ta có tam giác AHB =tam giác AHD nên AB=AD(2 cạnh tương ứng)
Xét tam giác ABD có AB=AD suy ra tam giác ABD cân mà góc ABD =60 độ(cái này bạn tự tính nha)
suy ra tam giác ABD đều
c,Dễ thấy được tam giác ADC cân tại D nên AD=DC
Xét tam giác AHD và tam giác CED có:
AD=DC
HDA=EDC(2 góc đối đỉnh)
AHD=CED=90
nên tam giác AHD=tam giác CED(ch-gn)
suy ra HD=DE mà theo câu a tam giác AHB=AHD nên HD=HB
vậy HB=DE(đpcm)
d, I là giao điểm của CE và AH chứ bạn
Xét tam giác AIC có : AE vuông góc với IC
CH vuông góc với IA
mà CH cắt AE tại D
nên D là trực tâm của tam giác IAC
hay ID vuống góc với AC
mặt khác DF vuông góc với AC
nên I ,D,F thẳng hàng
Chúc bạn học tốt
a,Xét \(\Delta AHB\)và \(\Delta AHD\)có
AH chung
HB=HD
\(\widehat{AHB}=\widehat{AHD}\left(=90^0\right)\)
=> \(\Delta AHB\)=\(\Delta AHD\)
b, xem lại đề
c, Vì \(\widehat{C}=30^0\Rightarrow\widehat{B}=30^0\Rightarrow\widehat{BAD}=60^0\)
\(\Rightarrow\widehat{DAC}=30^0\)
\(\Rightarrow\Delta DAC\)cân tại D
\(\Rightarrow DA=DC\)
Từ đó ta chứng minh được \(\Delta HAD=\Delta ECD\)
\(\Rightarrow HD=DE=BH\)(ĐPCM)
d,Xem lại đề
Chúc học tốt!!!!!! :)
a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔAHB∼ΔCAB(g-g)