K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông tại H và ΔAHD vuông tại H có

AH chung

HB=HD

Do đó: ΔAHB=ΔAHD

b: ΔAHB=ΔAHD

=>AB=AD

Xét ΔABD có AB=AD và góc B=60 độ

nên ΔABD đều

c: Xét ΔDAC có góc DAC=góc DCA=30 độ

nên ΔDAC cân tại D

=>DA=DC

Xét ΔDHA vuông tại H và ΔDEC vuông tại E có

DA=DC

góc ADH=góc CDE

Do đó; ΔDHA=ΔDEC

=>DE=DH=HB

d: Xét ΔCIA có

AE,CH là đường cao

AE cắt CH tại D

Do đó: D là trực tâm

=>ID vuông góc AC

mà DF vuông góc AC

nên I,D,F thẳng hàng

19 tháng 4

a)

 Xét ΔAHB vuông tại H và ΔAHD vuông tại H có

AH chung

HB=HD

Do đó: ΔAHB=ΔAHD

b)

 ΔAHB=ΔAHD

=>AB=AD

Xét ΔABD có AB=AD và góc B=60 độ

nên ΔABD đều

c) 

Xét ΔDAC có góc DAC=góc DCA=30 độ

nên ΔDAC cân tại D

=>DA=DC

Xét ΔDHA vuông tại H và ΔDEC vuông tại E có

DA=DC

góc ADH=góc CDE

Do đó; ΔDHA=ΔDEC

=>DE=DH=HB

d)

 Xét ΔCIA có

AE,CH là đường cao

AE cắt CH tại D

Do đó: D là trực tâm

=>ID vuông góc AC

mà DF vuông góc AC

nên I,D,F thẳng hàng    

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{HBA}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=15^2+20^2=625\)

hay BC=25(cm)

Ta có: ΔHBA\(\sim\)ΔABC(cmt)

nên \(\dfrac{AH}{CA}=\dfrac{BA}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow\dfrac{AH}{20}=\dfrac{15}{25}\)

hay AH=12(cm)

Vậy: AH=12cm

28 tháng 3 2022

31 tháng 7 2018

Trả lời 2 câu đầu nha, 2 câu sau tí nữa mình viết sau

a, \(\Delta ABC\)cân tại A có: AH là đường cao của \(\Delta ABC\)\(\Rightarrow\)AH là trung tuyến của \(\Delta ABC\)\(\Rightarrow BH=HC=\frac{BC}{2}=\frac{12}{2}=6\left(cm\right)\)

\(\Delta ABH\)có \(\widehat{AHB}=90^o\)

\(\Rightarrow AB^2=AH^2+BH^2\)(định lý Py-ta-go)

hay \(10^2=AH^2+6^2\)

       \(AH^2=64\)

       \(AH=8\left(cm\right)\)

b, \(\Delta ABC\)có: \(HD//AC\left(gt\right)\)

                           \(BH=HC\left(cmt\right)\)

\(\Rightarrow BD=DA\)

\(\Delta ABH\)vuông tại H có: HD là trung tuyến của \(\Delta ABH\)\(\Rightarrow HD=BD=DA=\frac{AB}{2}\)

\(\Delta BDH\)có: \(HD=BD\left(cmt\right)\)\(\Rightarrow\Delta BDH\)cân tại D

31 tháng 7 2018

c, Nối D với C, H với E

Ta có: \(HD=BD\left(cmt\right)\\ BD=CE\left(gt\right)\)\(\Rightarrow HD=CE\)

Tứ giác DHEC có: \(HD//EC\left(gt\right)\\ HD=EC\left(cmt\right)\)\(\Rightarrow\)DHEC là hình bình hành \(\Rightarrow\)2 đường chéo DE và HC cắt nhau tại trung điểm của mỗi đường \(\Rightarrow\)I là trung điểm của DE

d,