K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2018

kho ua

5 tháng 5 2022

_____ + H2O --> H2SO4

CuCl2 + NaOH --> NaCl + ____

N2O5 + H2O --> _____

H2 + ___ --> Cu + ___

Fe + ____ --> FeSO4 + H2

BaCl2 + AgNO3 --> _____ + _____

____ + ____ --> Al2O3

CuO + ___ --> Cu + CO2

KMnO4 --> ____ + ____ + _____

12 tháng 5 2021

Đọc câu cuối thì chắc là chứng minh phản chứng đêý ạ ( Ngu lí thuyết, chắc thế.)
Đại khái cái cách này là bạn gọi 1 trong 3,4 điểm cần cm thẳng hàng ý trùng 1 điểm bâts kì thuộc (hoặc chứng minh được) thuộc đoạn thẳng có 2 mút là 2 điểm cần chứng minh ấy. Rồi từ dữ kiện đề bài => 2 điểm trùng nhau => thẳng hàng. Cơ bản mình hiểu là vậyyy ..

13 tháng 4 2022

sao FC lại song song me do cùng vuông góc hc được .CF vuông góc với tia phân giác góc MEC mà chỉ 

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

DO đó: ΔABC\(\sim\)ΔHBA

Suy ra: AB/HB=BC/BA

hay \(AB^2=HB\cdot BC\)

b: \(\widehat{BMH}+\widehat{HBM}=90^0\)

\(\widehat{BNA}+\widehat{ABN}=90^0\)

mà \(\widehat{ABN}=\widehat{HBM}\)

nên \(\widehat{BMH}=\widehat{BNA}\)

a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABH}\) chung

Do đó: ΔABC\(\sim\)ΔHBA(g-g)

Suy ra: \(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)(Các cặp cạnh tuong ứng tỉ lệ)

hay \(AB^2=BH\cdot BC\)(đpcm)

b) Xét ΔCHA vuông tại H và ΔAHB vuông tại H có 

\(\widehat{HAC}=\widehat{HBA}\left(=90^0-\widehat{C}\right)\)

Do đó: ΔCHA\(\sim\)ΔAHB(g-g)

Suy ra: \(\dfrac{CA}{AB}=\dfrac{HA}{HB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AC}{HA}=\dfrac{AB}{BH}\)(1)

Xét ΔHBA có BI là đường phân giác ứng với cạnh AH(gt)

nên \(\dfrac{IA}{IH}=\dfrac{AB}{BH}\)(2)

Từ (1) và (2) suy ra \(\dfrac{IA}{IH}=\dfrac{AC}{HA}\)(3)

c) Xét ΔAHC có AK là đường phân giác ứng với cạnh CH(gt)

nên \(\dfrac{CK}{KH}=\dfrac{AC}{HA}\)(4)

Từ (3) và (4) suy ra \(\dfrac{CK}{KH}=\dfrac{AI}{IH}\)

hay KI//AC(Định lí Ta lét đảo)

11 tháng 4 2022

a.Xét tam giác ABC và tam giác HBA, có:

^A=^H = 90 độ

^B: chung

Vậy tam giác ABC đồng dạng tam giác HBA ( g.g )

\(\Rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\)

\(\Leftrightarrow AB^2=BC.HB\)

b.Áp dụng định lý pitago vào tam giác vuông ABC, có:

\(BC=\sqrt{15^2+20^2}=25cm\)

Ta có:\(AB^2=BC.HB\)

\(\Leftrightarrow15^2=25HB\)

\(\Leftrightarrow HB=9cm\)

\(\Rightarrow HC=25-9=16cm\)

c. Áp dụng t/c đường phân giác góc A, ta có:

\(\dfrac{DC}{AC}=\dfrac{DB}{AB}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\dfrac{DC}{AC}=\dfrac{DB}{AB}=\dfrac{DC+DB}{AC+AB}=\dfrac{25}{35}=\dfrac{5}{7}\)

\(\Rightarrow DB=\dfrac{5}{7}.15=\dfrac{75}{7}cm\)

 

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

=>góc HAB=góc ACB

b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

góc HAB=góc HCA

=>ΔHAB đồng dạng với ΔHCA

=>HA/HC=HB/HA

=>HA^2=HB*HC

c: BC=căn 15^2+20^2=25cm

BD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=(AD+CD)/(3+5)=20/8=2,5

=>AD=7,5cm

BD=căn 15^2+7,5^2=15/2*căn 5(cm)

a: Xet ΔABC vuông tại A và ΔHBA vuông tại H co

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm