K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(HC=\dfrac{3^2}{4}=2.25\left(cm\right)\)

BC=HB+HC=6,25(cm)

AM=BC/2=3,125(cm)

\(AB=\sqrt{4\cdot6.25}=5\left(cm\right)\)

\(AC=\sqrt{6.25^2-5^2}=3.75\left(cm\right)\)

15 tháng 5 2022

+ ) áp dụng định lí Pytago trong tam giác vuông \(ABH\) vuông tại \(H\) , ta có :

\(AB^2=AH^2+HB^2=3^2+4^2=25\Rightarrow AB=5\left(cm\right)\)

+ ) áp dụng hệ thức về cạnh và đường cao trong tam giác vuông \(ABC\) với \(AH\) là đường cao , ta có :

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\) \(\dfrac{1}{AC^2}=\dfrac{1}{AH^2}-\dfrac{1}{AB^2}\) 

\(\Leftrightarrow\) \(\dfrac{1}{AC^2}=\dfrac{1}{3^2}-\dfrac{1}{5^2}=\dfrac{16}{225}\) 

\(\Rightarrow AC=\dfrac{15}{4}\left(cm\right)\)

+ ) áp dụng định lí Pytago trong tam giác vuông \(ABC\) vuông tại \(A\) , ta có :

\(BC^2=AB^2+AC^2=5^2+\left(\dfrac{15}{4}\right)^2=\dfrac{625}{16}\)

\(\Rightarrow BC=\dfrac{25}{4}\left(cm\right)\)

+ ) tam giác \(ABC\) vuông tại \(A\) có trung tuyến \(AM\) nên ta có :

\(AM=\dfrac{1}{2}BC=\dfrac{25}{8}\left(cm\right)\)

 

 

23 tháng 5 2021

A B C H M

Xét tam giác ABH vuông tại H, ta có:

\(AB^2=AH^2+BH^2\)\(=3^2+4^2=25\)

\(\Rightarrow AB=5\left(cm\right)\)

Xét tam giác ABC vuông tại A, theo hệ thức lượng ta có:

\(AH^2=AB\cdot AC\Rightarrow AC=\dfrac{AH^2}{AB}=\dfrac{3^2}{5}=1,8\left(cm\right)\)

Do đó:\(BC=\sqrt{AB^2+AC^2}=\sqrt{5^2+1,8^2}\simeq5,3\left(cm\right)\)

AM là đường trung tuyến trong tam giác vuông ABC

=> AM=\(\dfrac{1}{2}\) BC= 2,65 \(\left(cm\right)\)

11 tháng 2 2018

+) Áp dụng định lý Pytago trong tam giác vuông ABH vuông tại H ta có:

+) Áp dụng hệ thức về cạnh và đường cao trng tam giác vuông ABC với AH là đường cao ta có:

+) Áp dụng định lý Pytago trong tam giác vuông ABC vuông tại A ta có:

+) Tam giác ABC vuông tại A có trung tuyến AM nên ta có:

+) Diện tích tam giác ABC với AH là đường cao ta có:

Vậy AB = 5cm, AC =  15 4 cm; AM =  25 8 cm;     S ∆ A B C = 75 8 c m 2 .

Đáp án cần chọn là: A

30 tháng 7 2019

VÌ AM LÀ ĐƯỜNG TRUNG TUYẾN ỨNG VỚI CẠNH HUYỀN

SUY RA AM=1/2*BC=1/2*10=5 CM

XÉT TAM GIÁC AHM VUÔNG TẠI H[VÌ AH LÀ ĐƯỜNG CAO]

SUY RA MH^2=AM^2-AH^2[PI TA GO]

MH^2=5^2-4,8^2

MH^2=1,96

MH=1,4

LẠI CÓ

BH=BM+MH=1/2*BC+1,4=5+1,4=6,4[CM]

TA CÓ:

CH=CM-MH=1/2BC-MH=5-1,4=3,6

TAM GIÁC ABH

AB^2=BH^2+AH^2

SUY RA AB^2=6,4^2+4,8^2=64          AB=8[CM]

TAM GIÁC ABC

AC^2=BC^2-AB^2

AC^2=10^2-8^2=36                    AC=6[CM]

10 tháng 11 2021

Giải nhanh giúp mình với

10 tháng 11 2021

Vì AM là trung tuyến ứng với cạnh huyền BC nên \(AM=\dfrac{1}{2}BC=7,5\left(cm\right)\)

Áp dụng PTG: \(AC=\sqrt{BC^2-AB^2}=12\left(cm\right)\)

Áp dụng HTL: \(\left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=7,2\left(cm\right)\\BH=\dfrac{AB^2}{BC}=5,4\left(cm\right)\end{matrix}\right.\)

Áp dụng PTG: \(HM=\sqrt{AM^2-AH^2}=2,1\left(cm\right)\)

Vậy \(S_{AHM}=\dfrac{1}{2}HM\cdot AH=\dfrac{1}{2}\cdot2,1\cdot7,2=7,56\left(cm^2\right)\)