K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2017

bạn tự vẽ hình nha

a) Áp dụng định lý Pi-ta-go cho tam giác ABC vuông tại A

=> \(AB^2+AC^2=BC^2\)

            \(3^2+4^2=BC^2\)

             \(9+16=BC^2\)

=>               \(BC^2=25\)

=>\(BC=5\)

b) Xét tam giác ABD và tam giác EBD có:

\(\widehat{BAD}=\widehat{BED}\left(=90độ\right)\)

BD chung

\(\widehat{ABD}=\widehat{EBD}\left(gt\right)\)

=> tam giác ABD = tam giác EBD (ch-gn)

c)Vì tam giác ABD = tam giác EBD

=>\(BA=BE\left(1\right)\)

Theo đề bài ta có:

\(AK=EC\left(2\right)\)

Cộng 2 vế của (1),(2)

=>\(BA+AK=BE+EC\)

               \(BK=BE\)

=> tam giác BKC cân

=>\(\widehat{BKC}=\widehat{BCK}\)

d)Xét tam giác BAI và tam giác BEI có:

IB chung

\(\widehat{ABI}=\widehat{EBI}\left(gt\right)\)

\(AB=BE\)

=> tam giác BAI = tam giác BEI (c-g-c)

=>AI = EI

Cho tam giác ABC vuông tại A,AB = 3cm,AC = 4cm,Tính độ dài BC,Vẽ đường phân giác BD của tam giác ABC,Chứng minh tam giác ABD = tam giác EBD,Trên tia đối của tia AB lấy điểm K sao cho AK = EC,Chứng minh góc BKC = góc BCK,Tia BD cắt KC tại I,Chứng minh tam giác IAK = tam giác IEC,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

THAM KHẢO PHẦN a) VÀ b) NÈ

NHỚ TK MK NHA

15 tháng 6 2018

a, Xét ∆ ABC vuông tại A

➡️AB2 + AC2 = BC2 (Pitago)

➡️BC2 = 32 + 42

➡️BC2 = 25

➡️BC = 5 (cm) 

b, Xét ∆ ABD và ∆ EBD có:

Góc A = góc E = 90°

BD chung

Góc ABD = góc EBD (gt)

➡️∆ ABD = ∆ EBD (ch - gn)

➡️AB = EB (2 cạnh t/ư)

c, Ta có: 

BA + AK = BK

BE + EC = BC

mà AB = EB (cmt)

      AK = EC (gt)

➡️BK = BC

Xét ∆ BKI và ∆ BCI có:

BK = BC (cmt)

Góc ABD = góc EBD (gt)

BI chung

➡️∆ BKI = ∆ BCI (c.g.c)

➡️Góc BKI = góc BCI (2 góc t/ư)

d, Xét ∆ ABI và ∆ EBI có:

AB = EB (cmt) 

Góc ABD = góc EBD (gt)

BI chung

➡️∆ ABI = ∆ EBI (c.g.c)

➡️IA = IE (2 cạnh t/ư)

Hok tốt~

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=3^2+4^2=25\)

hay BC=5(cm)

Vậy: BC=5cm

24 tháng 3 2021

 Xét ΔABD vuông tại A

       ΔEBD vuông tại E

CÓ : BD : CẠNH HUYỀN CHUNG

\(\widehat{ABD}=\widehat{EBD}\) (D LÀ TIA PHÂN GIÁC CỦA GÓC B)

⇒ΔABD= ΔEBD (CẠNH HUYỀN-CẠNH GÓC VUÔNG)

C)XÉT ΔDAI VUÔNG TẠI A

ΔDEC VUÔNG TẠI E 

CÓ: \(\widehat{A}=\widehat{E}\)(GT)

AD=CD(ΔABD= ΔEBD)

\(\widehat{ADI}=\widehat{EDC}\) (ĐỐI ĐỈNH)

⇒ΔDAI=ΔDEC (G-C-G)

⇒DI = CD 

⇒ΔIDC CÂN TẠI D 

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt...
Đọc tiếp

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC

1
22 tháng 11 2019

1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath

11 tháng 2 2021

A) Xét ΔABD và ΔEBD có:

+) AB=BE (gt)

+) góc ABD= góc EBD (do BD là phân giác góc B)

+) BD chung

=> ΔABD = ΔEBD (c-g-c)

b)

Qua C kẻ đường thẳng vuông góc với BD tại H.

Xét ΔBCF có: BH là đường cao đồng thời là phân giác của góc B

=> ΔBCF cân tại B (tính chất)

=> BC= BF (điều phải chứng minh)

c)

Xét ΔABC và ΔEBF có:

+) AB = EB (gt)

+) góc B chung

+) BC= BF (câu b)

=> ΔABC = ΔEBF (c-g-c)

d)

Từ ý a, ΔABD = ΔEBD (c-g-c)

=> góc BAD= góc BED = 90

=> DE ⊥ BC

Xét ΔBCF có: BH và CA là 2 đường cao cắt nhau tại D

=> D là trực tâm

=> FD ⊥ BC 

=> DE trùng với FD

=> D,E,F thẳng hàng

b) Ta có: ΔBAD=ΔBED(cmt)

nên DA=DE(hai cạnh tương ứng)

Ta có: BA=BE(gt)

nên B nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: DA=DE(cmt)

nên D nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE(Đpcm)

Sửa đề: BA=BE

a) Xét ΔBAD và ΔBED có 

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔBAD=ΔBED(c-g-c)

Suy ra: \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{BED}=90^0\)

hay DE⊥BC(đpcm)