K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ΔABC vuông tại A

=>BC^2=AB^2+AC^2

=>\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

=>BD/3=CD/4

mà BD+CD+15

nên \(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{15}{7}\)

=>BD=45/7(cm)

Xét ΔABC có AD là phân giác

nên \(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos\left(\dfrac{BAC}{2}\right)\)

\(=\dfrac{2\cdot9\cdot12}{9+12}\cdot\dfrac{\sqrt{2}}{2}=\dfrac{36\sqrt{2}}{7}\left(cm\right)\)

ΔABC vuông tại A có AK là đường cao

nên AK*BC=AB*AC

=>AK*15=12*9=108

=>AK=7,2cm

ΔAKD vuông tại K

=>AK^2+KD^2=AD^2

=>KD^2=AD^2-AK^2=1296/1225

=>KD=36/35(cm)