Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔAFH và ΔAHC có:
góc HAC chung
AFC=AHC=90 độ (gt)
=>ΔAFH∼ΔAHC(gg)
=>AF/AH=AH/AC
=>AF.AC=AH^2(1)
d,Từ ΔAEH∼ΔAHB
=>AE/AH=AH/AB
=>AE.AB=AH^2(2)
từ 1 và 2=>AE.AB=AF.AC
=>AE/AC=AF/AB
mà góc A chung
=>ΔAEF∼ΔACB(c.g.c)
e,Ta có AE.AB=AH^2
=>AE.6=4.8^2
=>AE=4,8^2/6=3,84
AF.AC=AH^2=>AF.8=4,8^2=>AF=2,8
=>Saef=2,8.3,84.1/2=5,376
Sbcfe=Sabc-Saef=(6.8:2)-5,376=24-3,76=20.24
a,Áp dụng Pytago ta có
BC^2=AB^2+AC^2
BC^2=6^2+8^2=36+64=100
BC=10
Mặt khác :
Sabc=1/2AB.AC=1/2BC.AH
=>AB.AC=BC.AH
=>6.8=10.AH
AH=48/10=4,8
b,Xét △AEH và △AHB có:
góc HAB chung
AEH=AHB=90 độ (gt)
=>ΔAEH ∼ΔAHB
a: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=4.8\left(cm\right)\)
b: Xét ΔAEH vuông tại E và ΔAHB vuông tại H có
góc EAH chung
Do đó: ΔAEH\(\sim\)ΔAHB
c: Xét ΔAHC vuông tại H có HF là đường cao
nên \(AH^2=AF\cdot AC\left(1\right)\)
d: Xét ΔAHB vuông tại H có HE là đường cao
nên \(AH^2=AE\cdot AB\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
hay AE/AC=AF/AB
=>ΔAEF\(\sim\)ΔACB
a) Áp dụng địnhh lý Py-ta-go vào tam giác ABC vuông tại A ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
Ta có: \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)
\(\Rightarrow AB.AC=AH.BC\)
\(\Rightarrow AH=4,8\left(cm\right)\)
b) Xét tam giác AEH và tam giác AHB có:
\(\hept{\begin{cases}\widehat{A1}chung\\\widehat{AEH}=\widehat{AHB}=90^0\end{cases}\Rightarrow\Delta AEH~\Delta AHB\left(g.g\right)}\)
c) Xét tam giác AHC và tam giác AFH có:
\(\hept{\begin{cases}\widehat{HAC}chung\\\widehat{AHC}=\widehat{AFH}=90^0\end{cases}\Rightarrow\Delta AHC~\Delta AFH\left(g.g\right)}\)
\(\Rightarrow\frac{AH}{AC}=\frac{AF}{AH}\)( các đoạn t.ứng tỉ lệ )
\(\Rightarrow AH^2=AC.AF\)
d) Xét tứ giác AEHF có:
\(\hept{\begin{cases}\widehat{AEH}=90^0\\\widehat{EAF}=90^0\\\widehat{AFH}=90^0\end{cases}\Rightarrow AEHF}\)là hình chữ nhật ( dhnb)
\(\Rightarrow EF\)là đường phân giác của góc AEH và AH là đường phân giác của góc EHF (tc hcn )
\(\Rightarrow\widehat{E1}=\frac{1}{2}\widehat{AFH},\widehat{H1}=\frac{1}{2}\widehat{EHF}\)
Mà \(\widehat{AEH}=\widehat{EHF}\left(tc\right)\)
\(\Rightarrow\widehat{E1}=\widehat{H1}\) (3)
Vì tam giác AHC vuông tại H nên \(\widehat{HAC}+\widehat{C}=90^0\)( 2 góc phụ nhau ) (1)
Vì tam giác AFH vuông tại F nên \(\widehat{HAF}+\widehat{H1}=90^0\)( 2 góc phụ nhau ) (2)
Từ (1) và (2) \(\Rightarrow\widehat{C}=\widehat{H1}\)(4)
Từ (3) và (4) \(\Rightarrow\widehat{C}=\widehat{E1}\)
Xét tam giác ABC và tam giác AFE có:
\(\hept{\begin{cases}\widehat{A}chung\\\widehat{C}=\widehat{E1}\left(cmt\right)\end{cases}\Rightarrow\Delta ABC~\Delta AFE\left(g.g\right)}\)
e) vÌ \(\Delta ABC~\Delta AFE\left(cmt\right)\)
\(\Rightarrow\frac{AB}{AC}=\frac{AF}{AE}\)( các đoạn t.ứng tỉ lệ ) (5)
Xét tam giác ABC có AK là đường phân giác trong của tam giác ABC
\(\Rightarrow\frac{BK}{KC}=\frac{AB}{AC}\)( tc) (6)
Xét tam giác AEF có AI là đường phân giác trong của tam giác AEF
\(\Rightarrow\frac{IF}{IE}=\frac{AF}{AE}\)(tc) (7)
Từ (5) ,(6) và (7) \(\Rightarrow\frac{BK}{KC}=\frac{IF}{IE}\)
\(\Rightarrow KB.IE=KC.IF\left(đpcm\right)\)
Xét tam giác AEH và tam giác AHB, có:
\(\widehat{AHB}=\widehat{AEH}=90^0\)
\(\widehat{A}:chung\)
Vậy tam giác AEH đồng dạng tam giác AHB ( g.g )
Giải: a) Ta có : \(S_{\Delta ABC}\)= \(\frac{AH.BC}{2}\) (1)
\(S_{\Delta ABC}\)= \(\frac{AB.AC}{2}\) (2)
Từ (1) và (2) suy ra \(\frac{AH.BC}{2}=\frac{AB.AC}{2}\) => AH.BC = AB.AC (Đpcm)
b) Xét t/giác ABC vuông tại A (áp dụng định lí Pi - ta - go)
Ta có: BC2 = AB2 + AC2 = 152 + 202 = 225 + 400 = 625
=> BC = 25
Ta có: AH.BC = AB.AC (cmt)
hay AH. 25 = 15.20
=> AH.25 = 300
=> AH = 300 : 25
=> AH = 12
c) chưa hc
a, Xét tam giác ABC và tam giác HBA ta có :
^BAC = ^AHB = 900
^B _ chung
Vậy tam giác ABC ~ tam giác HBA ( g.g )
c, tam giác ABC vuông tại A, có đường cao AH
Áp dụng định lí Pytago cho tam giác ABC vuông tại A
\(AB^2+AC^2=BC^2\Rightarrow BC^2=36+64=100\Rightarrow BC=10\)cm
Ta có : \(\dfrac{AC}{AH}=\dfrac{BC}{AB}\)( cặp tỉ số đồng dạng ý a )
\(\Rightarrow\dfrac{8}{AH}=\dfrac{10}{6}\Rightarrow AH=\dfrac{48}{10}=\dfrac{24}{5}\)cm
d, phải là cắt AC nhé, xem lại đề nhé bạn