K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2020

A B C H E F I K 1 1 1

a) Áp dụng địnhh lý Py-ta-go vào tam giác ABC vuông tại A ta được:
\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

Ta có: \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)

\(\Rightarrow AB.AC=AH.BC\)

\(\Rightarrow AH=4,8\left(cm\right)\)

b)  Xét tam giác AEH và tam giác AHB có:

\(\hept{\begin{cases}\widehat{A1}chung\\\widehat{AEH}=\widehat{AHB}=90^0\end{cases}\Rightarrow\Delta AEH~\Delta AHB\left(g.g\right)}\)

c) Xét tam giác AHC và tam giác AFH có:

\(\hept{\begin{cases}\widehat{HAC}chung\\\widehat{AHC}=\widehat{AFH}=90^0\end{cases}\Rightarrow\Delta AHC~\Delta AFH\left(g.g\right)}\)

\(\Rightarrow\frac{AH}{AC}=\frac{AF}{AH}\)( các đoạn t.ứng tỉ lệ ) 

\(\Rightarrow AH^2=AC.AF\)

d) Xét tứ giác AEHF có:

\(\hept{\begin{cases}\widehat{AEH}=90^0\\\widehat{EAF}=90^0\\\widehat{AFH}=90^0\end{cases}\Rightarrow AEHF}\)là hình chữ nhật ( dhnb)

\(\Rightarrow EF\)là đường phân giác của góc AEH và AH là đường phân giác của góc EHF (tc hcn )

\(\Rightarrow\widehat{E1}=\frac{1}{2}\widehat{AFH},\widehat{H1}=\frac{1}{2}\widehat{EHF}\)

Mà \(\widehat{AEH}=\widehat{EHF}\left(tc\right)\)

\(\Rightarrow\widehat{E1}=\widehat{H1}\) (3)

Vì tam giác AHC vuông tại H nên \(\widehat{HAC}+\widehat{C}=90^0\)( 2 góc phụ nhau ) (1)

Vì tam giác AFH vuông tại F nên \(\widehat{HAF}+\widehat{H1}=90^0\)( 2 góc phụ nhau ) (2)

Từ (1) và (2) \(\Rightarrow\widehat{C}=\widehat{H1}\)(4)

Từ (3) và (4) \(\Rightarrow\widehat{C}=\widehat{E1}\)

Xét tam giác ABC và tam giác AFE có:

\(\hept{\begin{cases}\widehat{A}chung\\\widehat{C}=\widehat{E1}\left(cmt\right)\end{cases}\Rightarrow\Delta ABC~\Delta AFE\left(g.g\right)}\)

e) vÌ \(\Delta ABC~\Delta AFE\left(cmt\right)\)

\(\Rightarrow\frac{AB}{AC}=\frac{AF}{AE}\)( các đoạn t.ứng tỉ lệ ) (5)

Xét tam giác ABC có AK là đường phân giác trong của tam giác ABC

\(\Rightarrow\frac{BK}{KC}=\frac{AB}{AC}\)( tc)  (6)

Xét tam giác AEF có AI là đường phân giác trong của tam giác AEF

\(\Rightarrow\frac{IF}{IE}=\frac{AF}{AE}\)(tc)  (7)

Từ (5) ,(6) và (7) \(\Rightarrow\frac{BK}{KC}=\frac{IF}{IE}\)

\(\Rightarrow KB.IE=KC.IF\left(đpcm\right)\)

5 tháng 5 2020

hình tự vẽ nhé 

5 tháng 5 2020

ok banj

Bài 1 Cho tam giác ABC vuông tại A có đường cao AH. Vẽ HE vuông góc với AB tại E, vẽ HF vuông góc với AC tại F. a) Chứng minh rằng tam giác AEH và tam giác AHB đồng dạng. Suy ra AH 2 = AE.AB. b) Chứng minh rằng AE.AB = AF.AC. c) Chứng minh rằng tam giác AFE đồng dạng với tam giác ABC. d) Gọi AM là trung tuyến của tam giác ABC. Chứng minh AM⊥EF Bài 2/ Cho tam giác ABC có ba góc nhọn, đường cao BE, CF cắt nhau ở...
Đọc tiếp

Bài 1

Cho tam giác ABC vuông tại A có đường cao AH. Vẽ HE vuông góc với AB tại
E, vẽ HF vuông góc với AC tại F.
a) Chứng minh rằng tam giác AEH và tam giác AHB đồng dạng. Suy ra AH 2 =
AE.AB.
b) Chứng minh rằng AE.AB = AF.AC.
c) Chứng minh rằng tam giác AFE đồng dạng với tam giác ABC.
d) Gọi AM là trung tuyến của tam giác ABC. Chứng minh AM⊥EF
Bài 2/

Cho tam giác ABC có ba góc nhọn, đường cao BE, CF cắt nhau ở H.
a) Chứng minh AE.AC = AF.AB
b) Chứng minh ΔAEF∼ΔABC.
c) Chứng minh ΔHEF∼ΔHCB.
d) Phân giác của góc BAC lần lượt cắt EF tại I, cắt BC tại K.

1/ Cho tam giác ABC vuông tại A có đường cao AH. Vẽ HE vuông góc với AB tại
E, vẽ HF vuông góc với AC tại F.
a) Chứng minh rằng tam giác AEH và tam giác AHB đồng dạng. Suy ra AH 2 =
AE.AB.
b) Chứng minh rằng AE.AB = AF.AC.
c) Chứng minh rằng tam giác AFE đồng dạng với tam giác ABC.
d) Gọi AM là trung tuyến của tam giác ABC. Chứng minh AM⊥EF
2/ Cho tam giác ABC có ba góc nhọn, đường cao BE, CF cắt nhau ở H.
a) Chứng minh AE.AC = AF.AB
b) Chứng minh ΔAEF∼ΔABC.
c) Chứng minh ΔHEF∼ΔHCB.
d) Phân giác của góc BAC lần lượt cắt EF tại I, cắt BC tại K.

Chứng Minh: \(\frac{IE}{IF}=\frac{KB}{KC}\)

0