Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
I là trung điểm của AB
I là trung điểm của MN (M đối xứng N qua I)
=> AMBN là hình bình hành
mà AM = MB (AM là đường trung tuyến của tam giác ABC vuông tại A)
=> AMBN là hình thoi
b)
Tam giác ABC vuông tại A có:
BC2 = AB2 + AC2 (định lý Pytago)
= 122 + 162
= 144 + 256
= 400 (cm)
BC = \(\sqrt{400}\) = 20 (cm)
mà AM = \(\frac{1}{2}\)BC = 20 : 2 = 10 (cm) (AM là đường trung tuyến của tam giác ABC vuông tại A)
AN = MB (AMBN là hình thoi)
mà MB = MC (M là trung điểm của BC)
=> AN = MC
mà AN // MC (AMBN là hình thoi)
=> ACMN là hình bình hành
=> MN = AC
mà AC = 16 (cm)
=> MN = 16 (cm)
A.
I là trung điểm của AB
I là trung điểm của MN (M đối xứng N qua I)
=> AMBN là hình bình hành
mà AM = MB (AM là đường trung tuyến của tam giác ABC vuông tại A)
=> AMBN là hình thoi
B.
Tam giác ABC vuông tại A có:
BC2 = AB2 + AC2 (định lý Pytago)
= 122 + 162
= 144 + 256
= 400 (cm)
BC = √400400 = 20 (cm)
mà AM = 1212BC = 20 : 2 = 10 (cm) (AM là đường trung tuyến của tam giác ABC vuông tại A)
AN = MB (AMBN là hình thoi)
mà MB = MC (M là trung điểm của BC)
=> AN = MC
mà AN // MC (AMBN là hình thoi)
=> ACMN là hình bình hành
=> MN = AC
mà AC = 16 (cm)
=> MN = 16 (cm)
a)tứ giác AMBN có
I là trung điểm AB (gt)
I là trung điểm NM (N đx M qua I)
=> AMBN là HBH (vì là tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường)
có I là trung điểm AB (gt)
M là TĐiểm BC (AM là đường trung tuyến)
=> IM là đường trung bình tgiasc ABC (đnghĩa)
=> IM // AC IM = AC /2 (t/c đường trung bình)
IM // AC => IM vuộng AB (AC vuông AB )
hay NM vuông AB
HBH ABCD có 2 đường chéo vuông vs nhau=> ABCD là Hthoi (...)
b) có IM = AC/2 (cmcaau a).
=> IM = 6/2=3 (cm)
có I là Tđiểm NM (N đx M qua I)
=> NM = IM .2=6 (cm)
S hthoi AMBN = 1/2.6.4=12 (cm2 )
c) tam giác vuông ABC cần đk cân tại A để AMBN là Hvuông
a) AM là trung tuyến (gt). => M là trung điểm của BC.
=> BM = MC = \(\dfrac{1}{2}\) BC.
Xét tứ giác AMBN:
I là trung điểm của AB (gt).
I là trung điểm của NM (N là điểm đối xứng với M qua I).
=> Tứ giác AMBN là hình bình hành (dhnb).
=> AN = BM và AN // BM (Tính chất hình bình hành).
Mà BM = MC (cmt).
=> AN = MC.
Xét tứ giác ANMC:
AN = MC (cmt).
AN // MC (AN // BM).
=> Tứ giác ANMC là hình bình hành (dhnb).
b) Xét tam giác ABC vuông tại A:
AM là trung tuyến (gt).
=> AM = \(\dfrac{1}{2}\) BC (Tính chất đường trung tuyến trong tam giác vuông).
Mà BM = MC = \(\dfrac{1}{2}\) BC (cmt).
=> AM = BM = MC = \(\dfrac{1}{2}\) BC.
Xét hình bình hành AMBN: AM = BM (cmt).
=> Tứ giác AMBN là hình thoi (dhnb).
c) Tứ giác ANMC là hình bình hành (cmt).
=> NM = AC (Tính chất hình bình hành).
Mà AC = 6 cm (gt).
=> NM = AC = 6 cm.
\(S_{AMBN}=\dfrac{1}{2}.AB.NM=\dfrac{1}{2}.4.6=12\left(cm^2\right).\)
d) Tứ giác AMBN là hình vuông (gt).
=> \(\widehat{AMB}=90^o\) (Tính chất hình vuông).
=> \(AM\perp BC.\)
Xét tam giác ABC vuông tại A:
AM là trung tuyến (gt).
AM là đường cao \(\left(AM\perp BC\right).\)
=> Tam giác vuông ABC vuông cân tại A.
a) MI là đường TB của \(\Delta\)ABC => MI //BC => MI _|_ AB tại trung điểm I của AB ; Mà I là trung điểm của MN ( M dx N qua I)
=> tứ giác AMBN là hình thoi ( Có 2 dg chéo _|_ tại TĐ ..)
b) Pi ta go \(\Delta\) ABC => BC =20
trung tuyến AM = BC/2 = 20/2 =10
=> cạnh hình thoi = AM =10
IM = AC/2 ( t/c đường TB)
=> MN = 2IM =2.AC/2 =AC = 16
Pi ta go \(\Delta\)AIM => IA2 = AM2 - IM2 =102 - 82 = 62
=> IA =6 => AB =2IA =2.6 =12