K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2019

Ban chua hoc He thuc luong trong tam giac vuong va sin,cos ak ?

13 tháng 8 2019

Neu hoc roi thi chi can tu suy luan qua tam giac dong dang va cac ti so lien quan la xong

7 tháng 8 2016

ko ai bít lm lun hã @@

7 tháng 6 2021

a) \(1+tan^2B=1+\dfrac{AC^2}{AB^2}=\dfrac{AB^2+AC^2}{AB^2}=\dfrac{BC^2}{AB^2}=\dfrac{1}{\left(\dfrac{AB}{BC}\right)^2}=\dfrac{1}{cos^2B}\)

b) Ta có: \(a.sinB.cosB=BC.\dfrac{AC}{BC}.\dfrac{AB}{BC}=\dfrac{AC.AB}{BC}=\dfrac{AH.BC}{BC}=AH\)

\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=BC.\left(\dfrac{AB}{BC}\right)^2=BC.cos^2B\)

Tương tự \(\Rightarrow CH=BC.sin^2B\)

5 tháng 6 2018

Làm câu c thôi

5 tháng 6 2018

ABCHcabDEH**Cái tia phân giác là của câu a, không cần để ý nó**

Hình

22 tháng 5 2017

a/ Ta có: + AB2 + AC2 = 62 + 82 = 100

               + BC2 = 102 = 100 

       => AB2 + AC2 = BC2 = 100

      => tam giác ABC vuông tại A theo định lí pytago

b/ 4 ý này trong sách hình học 9 có CM nha bạn

c/ AH.BC = AB.AC

=> AH = \(\frac{AB.AC}{BC}=\frac{6.8}{10}=6,8\)cm

AB2= BC.BH

=> BH= \(\frac{AB^2}{BC}\)=  \(\frac{6^2}{10}\)

                            = 3,6 cm

AC2 = BC.CH

=> CH= \(\frac{AC^2}{BC}=\frac{8^2}{10}=6,4cm\)

22 tháng 5 2017

cái này toàn dùng tam giác đồng dạng để cm thôi

13 tháng 8 2023

a) Ta có: \(cos\alpha=\dfrac{12}{13}\)

Mà: \(sin^2\alpha+cos^2a=1\)

\(\Rightarrow sin^2\alpha=1-cos^2\alpha\)

\(\Rightarrow sin^2\alpha=1-\left(\dfrac{12}{13}\right)^2\)

\(\Rightarrow sin^2\alpha=\dfrac{25}{169}\)

\(\Rightarrow sin\alpha=\sqrt{\dfrac{25}{169}}\)

\(\Rightarrow sin\alpha=\dfrac{5}{13}\)

Mà: \(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\dfrac{5}{13}}{\dfrac{12}{13}}=\dfrac{5}{12}\)

b) Ta có: \(cos\alpha=\dfrac{3}{5}\)

Mà: \(sin^2\alpha+cos^2\alpha=1\)

\(\Rightarrow sin^2\alpha=1-cos^2\alpha\)

\(\Rightarrow sin^2\alpha=1-\left(\dfrac{3}{5}\right)^2\)

\(\Rightarrow sin^2\alpha=\dfrac{16}{25}\)

\(\Rightarrow sin\alpha=\sqrt{\dfrac{16}{25}}=\dfrac{4}{5}\)

Mà: \(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\dfrac{4}{5}}{\dfrac{3}{5}}=\dfrac{4}{3}\)

2:

a: BC=căn 16^2+12^2=20cm

Xét ΔABC vuông tại A có

sin B=cos C=AC/BC=3/5

cos B=sin C=AB/BC=4/5

tan B=cot C=3/5:4/5=3/4

cot B=tan C=1:3/4=4/3

b: AH=căn 13^2-5^2=12cm

Xét ΔAHC vuông tại H có

sin C=AH/AC=12/13

=>cos B=12/13

cos C=HC/AC=5/13

=>sin B=5/13

tan C=12/13:5/13=12/5

=>cot B=12/5

tan B=cot C=1:12/5=5/12

c: BC=3+4=7cm

AB=căn BH*BC=2*căn 7(cm)

AC=căn CH*BC=căn 21(cm)

Xét ΔABC vuông tại A có

sin B=cos C=AC/BC=căn 21/7

sin C=cos B=AB/BC=2/căn 7

tan B=cot C=căn 21/7:2/căn 7=1/2*căn 21

cot B=tan C=1/căn 21/2=2/căn 21