Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu b: Tam giác AHB vuông tại H, đường cao AH
=> AD.BD=DH2
Tương tự: AE.EC=HE2
=> AD.BD+AE.EC=DH2+HE2
=DE2 (Pytago)
=AH2 (ADHE là hình chữ nhật vì có 3 góc vuông)
Câu 1:
a: Xét ΔAHB vuông tạiH có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
b: \(BC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)
\(AH=\dfrac{4\cdot6}{2\sqrt{13}}=\dfrac{12}{\sqrt{13}}\left(cm\right)\)
\(AE=\dfrac{AH^2}{AC}=\dfrac{144}{13}:6=\dfrac{24}{13}\left(cm\right)\)
a/
Xét tg vuông ABH
\(AH^2=AM.AB\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
Xét tg vuông ACH có
\(AH^2=AN.AC\) (lý do như trên)
\(\Rightarrow AM.AB=AN.AC\)
b/
\(AN\perp AB;MH\perp AB\) => AN//MH
\(AM\perp AC;NH\perp AC\) => AM//NH
=> AMHN là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một)
Mặt khác \(\widehat{A}=90^o\)
=> AMHN là HCN => AM=NH; AN=MH (cạnh đối HCN)
Xét tg vuông ABH và tg vuông ACH có
\(\widehat{BAH}=\widehat{ACB}\) (cùng phụ với \(\widehat{ABC}\) )
=> tg ABH đồng dạng với tg ACH
\(\Rightarrow\left(\dfrac{AB}{AC}\right)^2=\dfrac{S_{ABH}}{S_{ACH}}\) (hai tg đồng dạng, tỷ số 2 diện tích bằng bình phương tỷ số đồng dạng)
\(\Rightarrow\left(\dfrac{AB}{AC}\right)^2=\dfrac{\dfrac{1}{2}.AB.MH}{\dfrac{1}{2}.AC.NH}\Rightarrow\dfrac{AB}{AC}=\dfrac{MH}{NH}\) lập phương 2 vế
\(\dfrac{AB^3}{AC^3}=\dfrac{MH^2.MH}{NH^2.NH}\) (1)
Xét tg vuông ABH
\(MH^2=BM.AM\) (trong tg vuông bình phương đường cao hạ tử đỉnh góc vuông bằng tích giữa hai hình chiếu của 2 cạnh góc vuông trên cạnh huyền) (2)
Xét tg vuông ACH, c/m tương tự
\(NH^2=CN.AN\) (3)
Thay (2) và (3) vào (1)
(1) \(\Leftrightarrow\dfrac{AB^3}{AC^3}=\dfrac{BM.AM.MH}{CN.AN.NH}\)
Mà AM = NH; AN = MH (cmt)
\(\Rightarrow\dfrac{AB^3}{AC^3}=\dfrac{BM}{CN}\)
bài đó mình cũng biết làm nhưng dài lắm nếu bn muốn biêt mình gợi ý cho
Bài này dài dòng lắm bạn ạ viết cũng phải chết mỏi
Ủng hộ nha
Đặt \(AB=a,AC=b\). Ta có: \(BC^2=a^2+b^2.\)
Áp dụng hệ thức lượng trong tam giác vuông :
\(BD.BC=AB^2\Rightarrow BD=\frac{AB^2}{BC}=\frac{a^2}{\sqrt{a^2+b^2}}\).
Tương tự \(CD=\frac{b^2}{\sqrt{a^2+b^2}}\).
Có \(MB.AB=BD^2\Rightarrow MB=\frac{BD^2}{AB}=\frac{a^4}{\left(a^2+b^2\right).a}=\frac{a^3}{a^2+b^2}\).
Tương tự ta tính được \(CN=\frac{b^3}{a^2+b^2}\).
Vậy \(\sqrt[3]{BM^2}+\sqrt[3]{CN^2}=\sqrt[3]{\left(\frac{a^3}{a^2+b^2}\right)^2}+\sqrt[3]{\left(\frac{b^3}{a^2+b^2}\right)^2}\)
\(=a^2.\sqrt[3]{\frac{1}{\left(a^2+b^2\right)^2}}+b^2.\sqrt[3]{\frac{1}{\left(a^2+b^2\right)^2}}\)
\(=\left(a^2+b^2\right).\sqrt[3]{\frac{1}{\left(a^2+b^2\right)^2}}\)
\(=\sqrt[3]{a^2+b^2}=\sqrt[3]{BC^2}\) ( Đpcm)
bạn vẽ tam giác vuông nha
A/ sử dụng địn lí ta két trong tam giác nha