K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: M là trung điểm của BC(gt)

nên \(BM=CM=\dfrac{BC}{2}=\dfrac{6}{2}=3cm\)

Ta có: ΔABC cân tại A(gt)

mà AM là đường trung tuyến ứng với cạnh đáy BC(M là trung điểm của BC)

nên AM là đường cao ứng với cạnh đáy BC(Định lí tam giác cân)

\(\Rightarrow AM\perp BC\)

Áp dụng định lí Pytago vào ΔABM vuông tại M, ta được:

\(AB^2=AM^2+BM^2\)

\(\Leftrightarrow AM^2=AB^2-BM^2=5^2-3^2=16\)

hay AM=4(cm)

Xét ΔABC có AM là đường cao ứng với cạnh BC(gt)

nên \(S_{ABC}=\dfrac{AM\cdot BC}{2}=\dfrac{4\cdot6}{2}=\dfrac{24}{2}=12cm^2\)

Vậy: Diện tích tam giác ABC là 12cm2

b) Xét tứ giác AMCN có 

O là trung điểm của đường chéo AC(gt)

O là trung điểm của đường chéo MN(M và N đối xứng nhau qua O)

Do đó: AMCN là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành AMCN có \(\widehat{AMC}=90^0\)(\(AM\perp BC\))

nên AMCN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

c) Hình chữ nhật AMCN trở thành hình vuông khi AM=CM

mà \(CM=\dfrac{BC}{2}\)(M là trung điểm của BC)

nên \(AM=\dfrac{BC}{2}\)

Xét ΔABC có

AM là đường trung tuyến ứng với cạnh BC(M là trung điểm của BC)

\(AM=\dfrac{BC}{2}\)(cmt)

Do đó: ΔABC vuông tại A(Định lí 2 về áp dụng hình chữ nhật vào tam giác vuông)

hay \(\widehat{BAC}=90^0\)

Vậy: Khi ΔABC có thêm điều kiện \(\widehat{BAC}=90^0\) thì AMCN là hình vuông

29 tháng 10 2016

a.

AM là đường trung tuyến của tam giác ABC cân tại A

=> AM là đường cao của tam giác ABC cân tại A

=> AM _I_ BC

hay AMC = 900

I là trung điểm của AC (gt)

I là trung điểm của MN (M đối xứng N qua I)

=> AMCN là hình bình hành

mà AMC = 900

=> AMCN là hình chữ nhật

K là trung điểm của AB (gt)

M là trung điểm của BC (AM là đường trung tuyến của tam giác ABC)

=> KM là đường trung bình của tam giác ABC

=> KM = AC/2

mà IC = AC/2 (I là trung điểm của AC)

=> KM = IC

mà KM // IC (KM là đường trung bình của tam giác ABC)

=> MKIC là hình bình hành

b.

AN = MC (AMCN là hình chữ nhật)

mà MC = BM (M là trung điểm của BC)

=> AN = BM

mà AN // BM (AMCN là hình chữ nhật)

=> ANMB là hình bình hành

mà E là trung điển của AM

=> E là trung điểm của BN

c.

AMCN là hình vuông

<=> Tam giác ABC vuông cân tại A

10 tháng 11 2016

ko biết

16 tháng 12 2021

a: Xét tứ giác ANMC có

MN//AC

MN=AC

Do đó: ANMC là hình bình hành

6 tháng 11 2018

A B C M H N

a) Tứ giác ANCM có hai đường chéo MN và AC cắt nhau tại H

mà H là trung điểm AC và H alf trung điểm MN

=> ANCM là hình bình hành

b) M là trung điểm BC, H là trung điểm AC => MH là đường trung bình của tam giác ABC

=> MH // AB  mà AB \(\perp\)AC => MH\(\perp\)AC hay MN\(\perp\)AC 

=> Hình bình hành ANCM là hình thoi

AB= 4cm , AC= 3cm, tam giác ABC vuông tại A

Áp dụng định lí Pi ta go

=> BC=5 cm

Tam giác ABC vuông tại A có AM là đường trung tuyến => AM=1/2BC=2,5 cm , Các cạnh của hình thoi bằng nhau và bằng 2,5 cm

31 tháng 8 2019

Giải bài 89 trang 111 Toán 8 Tập 1 | Giải bài tập Toán 8

a) Ta có MB = MC, DB = DA

⇒ MD là đường trung bình của ΔABC

⇒ MD // AC

Mà AC ⊥ AB

⇒ MD ⊥ AB.

Mà D là trung điểm ME

⇒ AB là đường trung trực của ME

⇒ E đối xứng với M qua AB.

b) + MD là đường trung bình của ΔABC

⇒ AC = 2MD.

E đối xứng với M qua D

⇒ D là trung điểm EM

⇒ EM = 2.MD

⇒ AC = EM.

Lại có AC // EM

⇒ Tứ giác AEMC là hình bình hành.

+ Tứ giác AEBM là hình bình hành vì có các đường chéo cắt nhau tại trung điểm của mỗi đường.

Hình bình hành AEBM lại có AB ⊥ EM nên là hình thoi.

c) Ta có: BC = 4cm ⇒ BM = 2cm

Chu vi hình thoi AEBM bằng 4.BM = 4.2 = 8cm

d)- Cách 1:

Hình thoi AEBM là hình vuông ⇔ AB = EM ⇔ AB = AC

Vậy nếu ABC vuông có thêm điều kiện AB = AC (tức tam giác ABC vuông cân tại A) thì AEBM là hình vuông.

- Cách 2:

Hình thoi AEBM là hình vuông ⇔ AM ⊥ BM

⇔ ΔABC có trung tuyến AM là đường cao

⇔ ΔABC cân tại A.

Vậy nếu ΔABC vuông có thêm điều kiện cân tại A thì AEBM là hình vuông.

27 tháng 8

tại sao AC //EM vậy ạ ?

Bài 3: Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA. Gọi M, N, P, Qtheo thứ tự là trung điểm của AD, AF, EF, ED.a) Tứ giác MNPQ là hình gì? Vì sao?7b) Tam giác ABC có điều kiện gì thì MNPQ là hình chữ nhật?c) Tam giác ABC có điều kiện gì thì MNPQ là hình thoi?Bài 4: Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M quaAB, E là giao điểm của MH và AB....
Đọc tiếp

Bài 3: Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA. Gọi M, N, P, Q
theo thứ tự là trung điểm của AD, AF, EF, ED.
a) Tứ giác MNPQ là hình gì? Vì sao?

7

b) Tam giác ABC có điều kiện gì thì MNPQ là hình chữ nhật?
c) Tam giác ABC có điều kiện gì thì MNPQ là hình thoi?
Bài 4: Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M qua
AB, E là giao điểm của MH và AB. Gọi K là điểm đối xứng với M qua AC, F là giao điểm của MK
và AC.
a) Xác định dạng của các tứ giác AEMF, AMBH, AMCK.
b) Chứng minh rằng H đối xứng với K qua A.
c) Tam giác vuông ABC có thêm điều kiện gì thì AEMF là hình vuông?
Bài 5: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua trung điểm
M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?

1

https://lazi.vn/edu/exercise/cho-tam-giac-abc-goi-d-e-f-theo-thu-tu-la-trung-diem-cua-ab-bc-ca-goi-m-n-p-q-theo-thu-tu-la-trung-diem

Bạn xem tại link này nhé

Học tốt!!!!!!

2 tháng 12 2017

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

2 tháng 12 2017

a. Xét tam giác ABC có BM=MC; AI=IC

=> IM là đường trung bình của tam giác ABC => IM//AB; IM=1/2AB=AK

Xét tứ giác AKMI có IM//AK; IM=AK

=> AKMI là hbh

Do AB=AC=> 1/2AB=1/2AC=> AK=AI

Xét hbh AKMI có AK=AI

=> AKMI là hình thoi

b. •Xét tứ giác AMCN có AC, MN là 2 đường chéo cắt nhau tại I và AI=IC MI=IN

=> AMCN là hbh

Do tam giác ABC cân tại A nên AM vừa là trung tuyến vừa là đường cao

=> AMC=90*

Hbh AMCN có AMC=90*

=> AMCN là hcn

• Xét tam giác ABC có AK=BK; BM=MC

=> KM là đường trung bình của tam giác ABC => KM//AC hay KM//IC; KM=1/2AC=IC

Xét tứ giác MKIC có KM//IC; KM=IC

=> MKIC là hbh

c. Do AMCN là hcn nên NAM=90*; AN=MC

Từ NAM=90*=> ANvgAM mà BMvgAM

=> AN//BM

Từ AN=MC mà MC=BM => AN=BM

Xét tứ giác ABMN có AN=BM; AN//BM

=> ABMN là hbh => AM và BN cắt nhau tại trung điểm mỗi đoạn 

Mà E là trung điểm của AM

=> E là trung điểm của BN

d. Để AMCN là hình vuông thì AC vg MN

Xét tam giác vuông AMC có MI vừa là trung tuyến vưaf là đường cao

=> AMC vuông cân tại M => ACM=45*=ABM

=> tam giác ABC vuông cân tại A