K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2021

a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)

BC = 10; AB = 8 (Gt)

=> AC^2 = 10^2 - 8^2

=> AC^2 = 36

=> AC = 6 do AC > 0

b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)

BM = MC do M là trung điểm của BC(gt)

^BMA = ^DMC (đối đỉnh)

=> tam giác AMB = tam giác DMC (c-g-c)

=> ^ABM = ^MCD mà 2 góc này slt

=> AB // CD 

AB _|_ AC

=> CD _|_ AC 

c, xét tam giác ACE có : AH _|_ AE 

AH = HE

=> tam giác ACE cân tại C 

d, xét tam giác BMD và tam giác CMA có L BM = MC

AM = MD

^BMD = ^CMA

=> tam giác BMD = tam giác CMA (c-g-c)

=> BD = AC

AC = CE do tam giác ACE cân tại C (câu c)

=> BD = CE

16 tháng 3 2020

a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)

BC = 10; AB = 8 (Gt)

=> AC^2 = 10^2 - 8^2

=> AC^2 = 36

=> AC = 6 do AC > 0

b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)

BM = MC do M là trung điểm của BC(gt)

^BMA = ^DMC (đối đỉnh)

=> tam giác AMB = tam giác DMC (c-g-c)

=> ^ABM = ^MCD mà 2 góc này slt

=> AB // CD 

AB _|_ AC

=> CD _|_ AC 

c, xét tam giác ACE có : AH _|_ AE 

AH = HE

=> tam giác ACE cân tại C 

d, xét tam giác BMD và tam giác CMA có L BM = MC

AM = MD

^BMD = ^CMA

=> tam giác BMD = tam giác CMA (c-g-c)

=> BD = AC

AC = CE do tam giác ACE cân tại C (câu c)

=> BD = CE

10 tháng 4 2020

1, Xét △ABC vuông tại A có: AC2 + AB2 = BC2 (định lý Pytago)

=> AC2 = BC2 - AB2 = 102 - 82 = 36

=> AC = 6 (cm)

2. Xét △AMB và △DMC 

Có: AM = MD (gt)

     AMB = DMC (2 góc đối đỉnh)

       MB = MC (gt)

=> △AMB = △DMC (c.g.c)

=> MAB = MDC (2 góc tương ứng)

Mà 2 góc này nằm ở vị trí so le trong

=> AB // DC (dhnb)

Mà AB ⊥ AC

=> CD ⊥ AC (từ vuông góc đến song song)

3. Xét △AHC và △EHC cùng vuông tại H

Có: CH là cạnh chung

       AH = EH (gt)

=> △AHC = △EHC (2cgv)

=> AC = EC (2 cạnh tương ứng)

=> △ACE cân tại C

4, Xét △CAM và △BDM

Có: AM = DM (gt)

    CMA = BMD (2 góc đối đỉnh)

      CM = MB (gt)

=> △CAM = △BDM (c.g.c)

=> AC = BD (2 cạnh tương ứng)

Mà AC = CE (cmt)

=> BD = CE

1 tháng 2 2018

a) Xét tam giác AMB và tam giác DMC có:

BM = CM (gt)

AM =DM (gt)

\(\widehat{AMB}=\widehat{DMC}\)  (Hai góc đối đỉnh)

\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)

b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)

Chúng lại ở vị trí so le trong nên AB //CD.

c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.

Suy ra MA = ME

Lại có MA = MD nên ME = MD.

d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.

Suy ra ED // BC

Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.

Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)

6 tháng 12 2021

NGU

b) ΔACE cân

Trả lời:

Xét ΔACH và ΔECH có :

AH = HE (gt)

AHCˆ=EHCˆ(=90o)

HC: chung

=> ΔACH=ΔECH (cạnh huyền-cạnh góc vuông)

=> CA= CE (2 cạnh tương ứng)

Xét ΔCAE có :

AC = CE (cmt)

=> ΔCAE cân tại C

                                       ~Học tốt!~

13 tháng 3 2018

A D B C H M E

a/ Xét 2 tam giác MDC và MAB có MA=MD (gt), MB=MC (gt), góc DMC=góc AMB (đối đỉnh)

=> tam giác MDC = tam giác MAB

=> Góc CBA=góc BCD (Góc tương ứng)

Xét \(\Delta ABC\)\(\widehat{CBA}+\widehat{ACB}=90^0\)(Tính chất Tam giác vuông)

=> \(\widehat{BCD}+\widehat{ACB}=90^0=\widehat{ACD}\) => \(CD\perp AC\)

b/ Xét 2 tam giác vuông CHE và CHA có: CH (chung); HE=HA (gt); Tam giác vuông tại H

=> \(\Delta CHE=\Delta CHA\)=> CA=CE (2 cạnh tương ứng) => \(\Delta CAE\)cân tại C

22 tháng 4 2018

a, áp dụng tổng 3 góc trong 1 tam giác => góc AB= 25 độ

AC < AB ( 65 độ > 25 độ)

b, Xét tam giác BHC và tam giác BHE có: BH- chung ; BHA = BHE (=90 độ) ; AH = HE ( theo đề bài)

=> hai tam giác bằng nhau (c.g.c) => BA = BE => tam giác BEA cân tại B (đpcm)

c, Dễ dàng chứng minh được tam giác BEC = tam giác BAC

=> BEC = BAC = 90 độ

=> tam giác BEC vuông tại E (đpcm)

d, Ta có: MH đi qua trung điểm của AD và AE trong tam giác ADE => NM là đường trung bình của tam giác này => MN // DE (đpcm)

26 tháng 3 2020
  • linhhlin

Đáp án:

 a) Xet tam giac AMB va tam giac DMC co:

AM = DM (gt) 

goc AMB = goc DMC ( vi hai goc doi dinh ) 

CM = BM( vi M la trung diem cua CB) 

=> tam giac AMB = tam giac DMC ( c-g-c ) 

=>goc MAB = goc MCD ( hai goc tuong ung ) 

Ma hai goc nay o vi tri so le trong nen CD //AB

Lai co: goc CAB = 90 do => goc ACB = 90 do

=> CD vuông góc AC(dpcm ) 

26 tháng 3 2020

Đáp án:

 a) Xet tam giac AMB va tam giac DMC co:

AM = DM (gt) 

goc AMB = goc DMC ( vi hai goc doi dinh ) 

CM = BM( vi M la trung diem cua CB) 

=> tam giac AMB = tam giac DMC ( c-g-c ) 

=>goc MAB = goc MCD ( hai goc tuong ung ) 

Ma hai goc nay o vi tri so le trong nen CD //AB

Lai co: goc CAB = 90 do => goc ACB = 90 do

=> CD vuông góc AC(dpcm ) 

  Chúc bạn học tốt !

14 tháng 12 2021

a) Xét tứ giác ACDB có:

+ M là trung điểm của BC (gt).

+ M là trung điểm của AD (MD = MA).
=> Tứ giác ACDB là hinhg bình hành (dhnb).

Mà ^BAC = 90o (Tam giác ABC vuông tại A).

=> Tứ giác ACDB là hình chữ nhật (dhnb).

=> AB // CD và CD \(\perp\) AC (Tính chất hình bình hành).

b) Trên tia đối của HA lấy E sao cho HE = HA (gt).

=> H là trung điểm của AE.

Xét tam giác CAE có:

+ CH là đường cao (CH \(\perp\) AE).

+ CH là đường trung tuyến (H là trung điểm của AE).

=> Tam giác CAE cân tại C.

=> CE = CA (Tính chất tam giác cân).

c) Ta có: CE = CA (cmt).

Mà CA = DB (Tứ giác ACDB là hình chữ nhật).

=> CE = DB (= CA).

d) Xét tam giác ADE có:

+ M là trung điểm của AD (MD = MA).

+ H là trung điểm của AE (gt).

=> MH là đường trung bình.

=> MH // DE (Tính chất đường trung bình trong tam giác).

Mà MH \(\perp\) AE (do AH \(\perp\) BC).

=> DE \(\perp\) AE (đpcm).